
SAVITRIBAI PHULE PUNE UNIVERSITY

A PRELIMINARY PROJECT REPORT ON

PRECISION EVALUATION OF POINTER ANALYSIS
VARIANTS

SUBMITTED TOWARDS THE
PARTIAL FULFILLMENT OF THE REQUIREMENTS OF

BACHELOR OF ENGINEERING (Computer Engineering)

BY

Ananya Roy Exam No: B120204354

Jui Shinde Exam No: B120204377

Mugdha Khedkar Exam No: B120204315

Under The Guidance of

Prof. Chhaya Gosavi

Prof. Supratim Biswas

DEPARTMENT OF COMPUTER ENGINEERING
CUMMINS COLLEGE OF ENGINEERING FOR WOMEN

KARVENAGAR, PUNE - 411052

CUMMINS COLLEGE OF ENGINEERING FOR WOMEN
DEPARTMENT OF COMPUTER ENGINEERING

CERTIFICATE

This is to certify that the Project Entitled

PRECISION EVALUATION OF POINTER ANALYSIS VARIANTS

Submitted by

Ananya Roy Exam No: B120204354

Jui Shinde Exam No: B120204377

Mugdha Khedkar Exam No: B120204315

is a bonafide work carried out by Students under the supervision of Prof. Chhaya

Gosavi and it is submitted towards the partial fulfillment of the requirement of Bach-

elor of Engineering (Computer Engineering) Project.

Prof. Chhaya Gosavi External Examiner
Internal Examiner

Dept. of Computer Engg.

Prof. Supriya Kelkar
H.O.D

Dept. of Computer Engg.

Abstract

Pointer analysis is a static code analysis technique that establishes which pointers can

point to which variables, or storage locations [1]. It helps uncover indirect accesses

thereby providing useful information about data manipulation by the programs. This

improves the precision of program analyses and transformations that have to deal

with programs containing pointers. It is not only useful for making the programs

more efficient, but can also be used for increasing the reliability of IT based systems

deployed in medical communities, banking system, defense industry etc. During the

past thirty-five years, hundreds of papers and many Ph.D. theses have been published

on pointer analysis. New pointer analysis algorithms are being developed and com-

pared in order to analyze programs with optimized compiler features. The ongoing

research in this field predicts the evolution of faster program analyses.

IT systems need to satisfy two basic requirements : Efficiency and Precision. It is

important to strike a balance between the two. There are various pointer analysis

algorithms but none of them provide satisfactory efficiency and precision together.

The algorithms compromising on precision are quicker and easier to implement.

Thus, they are the clear choice of programmers. But they lose out on precision.

The primary motivation of the project is to compare all four pointer analysis vari-

ants and also to find out whether Context-Sensitive pointer analysis leads to some

additional precision if combined with the already efficient (but comparatively less

precise) Flow-Insensitive pointer analysis.

The input to these pointer analysis programs will be a set of pointer statements (of

the form x = &y, x = y etc). The output will be in the form of a Points-to graph. The

Points-to graphs generated by all the pointer analysis variants can be used in order

to study their precision. Efficiency can be calculated by calculating the execution

time of these programs. Measurements and testing of these programs is of prime

importance since it can lead to many insightful results. If Context-Sensitivity when

combined with Flow-Insensitivity does not give any additional precision, then it will

CCEW, Department of Computer Engineering 2016 I

simplify things for researchers to a large extent.

The resulting implementation finds its application at Institutional Level by students

and faculty to understand the optimization techniques easily by observing the inter-

mediate steps and details displayed by it. It is also used by the data flow analyzers to

experiment with new optimization techniques. As mentioned above, it can be used

for deploying efficient and precise IT systems.

CCEW, Department of Computer Engineering 2016 II

Acknowledgments

It gives us great pleasure in presenting the preliminary project report on

‘PRECISION EVALUATION OF POINTER ANALYSIS VARIANTS’.

We express our deepest gratitude towards our external guide Prof. Supratim Biswas

for giving us all the support and guidance we needed. His constant words of encour-

agement made this journey a very enriching experience.

We would like to take this opportunity to thank our internal guide Prof. Chhaya

Gosavi for giving us all the help and guidance we needed. We are really grateful to

her for her kind support. Her valuable suggestions were very helpful.

This research project would not have been possible without the support of Miss.

Pritam Gharat and all the staff and students of GCC Resource Center, IIT Bombay

who offered invaluable assistance, support and guidance.

We are also grateful to Prof. Supriya Kelkar, Head of Computer Engineering De-

partment, Cummins College of Engineering for Women for her indispensable support

and suggestions.

In the end our special thanks to all the staff members of the Computer engineering

Department for providing various resources such as laboratory with all needed soft-

ware platforms, continuous Internet connection, for Our Project.

Ananya Roy
Jui Shinde

Mugdha Khedkar
(B.E. Computer Engg.)

CCEW, Department of Computer Engineering 2016 III

INDEX

1 Synopsis 1

1.1 Project Title . 2

1.2 Project Option . 2

1.3 Internal Guide . 2

1.4 Sponsorship and External Guide 2

1.5 Technical Keywords . 2

1.6 Problem Statement . 3

1.7 Abstract . 3

1.8 Goals and Objectives . 4

1.9 Relevant mathematics associated with the Project 5

1.10 Review of Conference/Journal Papers supporting Project idea 7

1.11 Plan of Project Execution . 8

2 Technical Keywords 9

2.1 Area of Project . 10

2.2 Technical Keywords . 10

3 Introduction 12

3.1 Background . 13

3.2 Project Idea . 14

3.3 Motivation of the Project . 14

3.4 Literature Survey . 14

3.4.1 Limitations of the existing system 15

3.4.2 Pointer Analysis Variants 15

3.4.3 Data-Flow Analysis . 16

4 Problem Definition and scope 18

4.1 Problem Statement . 19

4.1.1 Goals and objectives . 19

4.1.2 Statement of scope . 19

4.2 Major Constraints . 20

4.3 Methodologies of Problem solving and efficiency issues 20

4.4 Outcome . 21

4.5 Applications . 21

4.6 Hardware Resources Required . 21

4.7 Software Resources Required . 21

5 Project Plan 23

5.1 Project Estimates . 24

5.1.1 Reconciled Estimates . 24

5.1.2 Project Resources . 24

5.2 Risk Management . 25

5.2.1 Risk Identification and Analysis 25

5.2.2 Overview of Risk Mitigation, Monitoring, Management . . 26

5.3 Project Schedule . 27

5.3.1 Project task set . 27

5.3.2 Task network . 28

5.3.3 Timeline Chart . 28

5.4 Team Organization . 29

5.4.1 Team structure . 29

5.4.2 Management reporting and communication 29

6 Software requirement specification 31

6.1 Introduction . 32

6.1.1 Purpose and Scope of Document 32

6.1.2 Overview of responsibilities of Developer 32

6.2 Usage Scenario . 33

CCEW, Department of Computer Engineering 2016 V

6.2.1 User profiles . 33

6.2.2 Use-cases . 33

6.2.3 Use Case View . 34

6.3 Data Model and Description . 34

6.3.1 Data Description . 34

6.4 Functional Model and Description 36

6.4.1 Data Flow Diagram . 36

6.4.2 Description of functions 37

6.4.3 Non Functional Requirements 37

6.4.4 Design Constraints . 38

6.4.5 Activity Diagram . 39

6.4.6 Software Interface Description 39

6.4.7 State Diagram . 40

7 Detailed Design Document using Appendix A and B 41

7.1 Introduction . 42

7.2 Architectural Design . 42

7.3 Data design (using Appendices A and B) 42

7.3.1 Internal software data structure 42

7.3.2 Global data structure . 43

8 Summary and Conclusion 44

8.1 Summary . 45

8.2 Conclusion . 45

Annexure A Laboratory assignments on Project Analysis of Algorithmic

Design 48

Annexure B Laboratory assignments on Project Quality and Reliability

Testing of Project Design 52

Annexure C Project Planner 59

Annexure D Plagiarism Report 61

CCEW, Department of Computer Engineering 2016 VI

List of Figures

1.1 Gantt Chart . 8

3.1 Compiler . 13

3.2 Phases of a compiler . 13

5.1 Task 1 . 27

5.2 Task 2 . 27

5.3 Task 3 . 28

5.4 Task Network . 28

5.5 Timeline Chart for the project . 28

6.1 Responsibilites of the Developer 32

6.2 Use case diagram . 34

6.3 Data Flow Diagram Level 0 . 36

6.4 Data Flow Diagram Level 1 . 36

6.5 Activity diagram . 39

6.6 State transition diagram . 40

7.1 Architecture Diagram . 42

B.1 State diagram . 55

B.2 Use case diagram . 56

B.3 Activity diagram . 56

B.4 Block diagram . 57

C.1 Gantt Chart . 60

List of Tables

5.1 Time Estimate . 24

5.2 Software Resources . 24

5.3 Risk Table . 25

5.4 Risk Probability definitions [2] . 25

5.5 Risk Impact definitions [2] . 25

5.6 Team Structure . 29

5.7 Meetings Held . 30

6.1 Use Cases . 33

CHAPTER 1

SYNOPSIS

1.1 PROJECT TITLE

Precision Evaluation of Pointer Analysis Variants : A Practical Comparison of Flow

and Context Sensitive as well as Insensitive pointer analysis methods.

1.2 PROJECT OPTION

Research based project.

1.3 INTERNAL GUIDE

Prof. Chhaya Gosavi

1.4 SPONSORSHIP AND EXTERNAL GUIDE

The project is sponsored by GCC Resource Center, Department of Computer Science

and Engineering, IIT Bombay.

1.5 TECHNICAL KEYWORDS

1. PROGRAMMING LANGUAGES

(a) Formal Definitions and Theory

i. Semantics

ii. Syntax

(b) Language Classifications

i. Applicative (functional) languages

ii. Concurrent, distributed, and parallel languages

iii. Data-flow languages

iv. Design languages

v. Extensible languages

vi. Macro and assembly languages

(c) Processors

CCEW, Department of Computer Engineering 2016 2

i. Code generation

ii. Compilers

iii. Interpreters

iv. Memory management (garbage collection)

v. Optimization

vi. Parsing

vii. Preprocessors

viii. Retargetable compilers

ix. Run-time environments

2. LOGICS AND MEANINGS OF PROGRAMS

(a) Semantics of Programming Languages

i. Program analysis

1.6 PROBLEM STATEMENT

Compare the results of Flow and Context Sensitive as well as Insensitive pointer

analysis methods and observe some useful insights.

1.7 ABSTRACT

Pointer analysis is a static code analysis technique that establishes which pointers

can point to which variables, or storage locations. It helps uncover indirect accesses

thereby providing useful information about data manipulation by the programs. This

improves the precision of program analyses and transformations that have to deal

with programs containing pointers. It is not only useful for making the programs

more efficient, but can also be used for increasing the reliability of IT based systems

deployed in medical communities, banking system, defence industry etc. During the

past thirty-five years, hundreds of papers and many Ph.D. theses have been published

on pointer analysis. New pointer analysis algorithms are being developed and com-

pared in order to analyze programs with optimized compiler features. The ongoing

research in this field predicts the evolution of faster program analyses.

CCEW, Department of Computer Engineering 2016 3

IT systems need to satisfy two basic requirements : Efficiency and Precision. It is

important to strike a balance between the two. There are various pointer analysis al-

gorithms but none of them provide satisfactory efficiency and precision together. The

algorithms compromising on precision are quicker and easier to implement. Thus,

they are everyone’s favorite. But they lose out on precision. The primary motiva-

tion of the project is to compare all four pointer analysis variants and also to find

out whether Context-Sensitive pointer analysis leads to some additional precision if

combined with the already efficient (but comparatively less precise) Flow-Insensitive

pointer analysis.

1.8 GOALS AND OBJECTIVES

Compiler Optimization is a technique that transforms a program into a semantically

equivalent program that uses lesser resources such as CPU, memory and thus, en-

ables faster execution of the program thereby increasing the efficiency and utilization

of the processor.

Pointer analysis or points-to analysis, a part of code optimisation techniques, is a

static program analysis that determines information on the values of pointer vari-

ables or expressions. Such information offers a static model of a program’s heap [3].

The information provided by pointer analysis can be further used for the optimisa-

tions in an optimising compiler.

The goal of the project is to compare the four variants of pointer analysis based on

the parameters of efficiency and precision and gain useful insights from the results

generated.

The implementation can be added as an optimising pass in the GCC compiler. The

comparison information provided as an output will help the optimiser to select the

appropriate variant of pointer analysis to analyse the source code accurately using

minimum resources.

CCEW, Department of Computer Engineering 2016 4

1.9 RELEVANT MATHEMATICS ASSOCIATED WITH THE PROJECT

System Description: S = {I, O, Fv, Sc, F}

where,

I = Input

O = Output

Fv = Functions

Sc = Success Conditions

F = Failure Conditions

Initialization :

• Ptr Stmt = {x=&y, x=y, *x=y, x=*y, *x=&y, *x=*y | x,y ∈ N}

• sec = {1,2...n} ∈ N

• P = set of pointers ∈ N

• P Set(X) = pointee set of X, ∀ X ∈ P

1. I = {x1, x2 ...xn | x1, x2 ...xn ∈ Ptr Stmt}

2. O = {Comparison of O1, O2, O3 and O4}

O1 = {x→ P Set(x) | ∀ x ∈ P} (Module 1 ie. FICS)

O2 = {x→ P Set(x) | ∀ x ∈ P} (Module 2 ie. FICI)

O3 = {x→ P Set(x) | ∀ x ∈ P} (Module 3 ie. FSCI)

O4 = {x→ P Set(x) | ∀ x ∈ P} (Module 4 ie. FSCS)

3. Fv = {Fme, Ffriend}

Fme = {F1}

F1 = process input(ptr)

∀ ptr ∈ Ptr Stmt, recognise the pointer statement and decide

actions to be taken.

CCEW, Department of Computer Engineering 2016 5

Ffriend = {F2, F3, F4, F5, F6, F7, F8}

F2 = add into pointee set(i, P Set(x))

adds i into P Set(X), where

{ i ∈ N
x ∈ P

P Set(x) ∈ P Set(X)
F3 = display pointee set(x)

prints P Set(x), where

{
x ∈ P

P Set(x) ∈ P Set(X)
F4 = search into pointee set(i, P Set(x))

= true if i ∈ P Set(x), where

{ i ∈ N
x ∈ P

P Set(x) ∈ P Set(X)
F5 = display points-to graph

{prints x→ P Set(x) | ∀ x ∈ P}, where

{ i ∈ N
x ∈ P

P Set(x) ∈ P Set(X)
F6 = union of pointee sets(P Set(x), P Set(y))

{ P Set(x) ∪ P Set(y) ∀ x ∈ P}, where

{ i ∈ N
x ∈ P

P Set(x) ∈ P Set(X)
F7 = calculate time taken

= t, where
{

t ∈ sec

F8 = print no. of failed constraints

= i, where
{

i ∈ N

4. Sc = { f(x) }

f(x)= function that compares the points-to graphs and statistics produced by

modules 1, 2, 3 and 4.

5. F = {F1, F2}

F1 = {if input /∈ Ptr Stmt}

F2 = {points-to graph not generated}

CCEW, Department of Computer Engineering 2016 6

1.10 REVIEW OF CONFERENCE/JOURNAL PAPERS SUPPORTING PROJECT

IDEA

1. R Padhye, Uday P Khedker : Interprocedural Data Flow Analysis in Soot using

Value Contexts.

A value context is defined by a particular input data flow value reaching a

procedure . It is used to enumerate the summary flow functions in terms of

(input → output) pairs . In order to compute these pairs, data flow analysis

within a procedure is performed separately for each context (i.e. input data

flow value) . When a new call to a procedure is encountered, the pairs are

consulted do decide if the procedure needs to be analysed again .

• If it was already analysed once for the input value, output can be directly

processed.

• Otherwise, a new context is created and the procedure is analysed for this

new context.

2. Marc Shapiro and Susan Horwitz, Fast and accurate flow-insensitive points-to

analysis. In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium

on Principles of programming languages (POPL 97). ACM, New York, NY,

USA, 1-14, 1997.

Flow-sensitive analysis takes into account the order in which the statements

are executed while flow-insensitive analysis assumes that the statements can be

executed in any order. Similarly, context-sensitive analysis takes into account

the fact that the function must return to the site of the most recent call, while

context-insensitive analysis propogates information from a call site, through

the called function, and back to all call sites.

CCEW, Department of Computer Engineering 2016 7

1.11 PLAN OF PROJECT EXECUTION

We have used Gantt chart to decide the plan of our project execution. We have

illustrated the start and end dates of all our project phases shown in Table 5.1.

Online tool used : SmartSheet

The Gantt chart for our project is as follows:

Figure 1.1: Gantt Chart

CCEW, Department of Computer Engineering 2016 8

CHAPTER 2

TECHNICAL KEYWORDS

2.1 AREA OF PROJECT

Compiler Optimization

2.2 TECHNICAL KEYWORDS

Technical Key Words:

1. PROGRAMMING LANGUAGES

(a) Formal Definitions and Theory

i. Semantics

ii. Syntax

(b) Language Classifications

i. Applicative (functional) languages

ii. Concurrent, distributed, and parallel languages

iii. Data-flow languages

iv. Design languages

v. Extensible languages

vi. Macro and assembly languages

(c) Processors

i. Code generation

ii. Compilers

iii. Interpreters

iv. Memory management (garbage collection)

v. Optimization

vi. Parsing

vii. Preprocessors

viii. Retargetable compilers

ix. Run-time environments

2. LOGICS AND MEANINGS OF PROGRAMS

CCEW, Department of Computer Engineering 2016 10

(a) Semantics of Programming Languages

i. Program analysis

CCEW, Department of Computer Engineering 2016 11

CHAPTER 3

INTRODUCTION

3.1 BACKGROUND

A compiler is a program that accepts a source program as input and converts it into a

target program which is semantically equivalent [4]. The source program is written

in any high level language like C,C++ etc. The target language of the compiler is

most often the assembly language. This is further converted into the machine code

by the assembler.

Figure 3.1: Compiler

Optimization is one of the most important phases of the compiler. Compiler opti-

mization is a technique that converts a program into a semantically equivalent pro-

gram that uses lesser resources than before by performing suitable analysis and trans-

formations [4].

Figure 3.2: Phases of a compiler

CCEW, Department of Computer Engineering 2016 13

3.2 PROJECT IDEA

Compare the results of Flow and Context Sensitive as well as Insensitive pointer

analysis methods and observe some useful insights.

3.3 MOTIVATION OF THE PROJECT

Verification and validation of programs is of prime importance in today’s world with

increased dependence on IT based systems. Pointer analysis helps uncover indirect

accesses thereby providing useful information about data manipulation by the pro-

grams. This improves the precision of program analyses and transformations that

have to deal with programs containing pointers. IT systems need to satisfy two basic

requirements : Efficiency and Precision. It is important to strike a balance between

the two. The primary motivation of the project is to compare all four pointer analysis

variants and also to find out whether context-sensitive pointer analysis leads to some

additional precision if combined with the already efficient (but comparatively less

precise) flow-insensitive pointer analysis.

3.4 LITERATURE SURVEY

Pointer analysis is a static code analysis technique that establishes which pointers

can point to which variables, or storage locations [1]. On the intra procedural level,

pointer analysis can be classified as Flow-Insensitive and Flow-Sensitive analysis.

It can be classified into Context-Insensitive and Context-Sensitive analysis on the

interprocedural level. Pointer analysis aims to determine what memory locations the

code uses or modifies. It is useful in many program analyses.

Flow-insensitive pointer analysis does not depend on the control flow of the program.

The points-to graphs produced after flow-insensitive analysis are often a superset of

the graphs produced after flow-sensitive analysis. Flow-sensitive pointer analysis,

which takes the control flow of the program into account, is a more precise analysis

although it compromises on speed.

Flow-insensitive pointer analysis computes what memory locations pointers or pointer

expressions may refer to at any time in program execution. On the other hand, flow-

CCEW, Department of Computer Engineering 2016 14

sensitive analysis computes memory locations for every point in the program [5].

Flow-insensitive pointer analysis is generally used for whole program analysis be-

cause flow sensitive analysis is traditionally very expensive. Flow-insensitive anal-

ysis is faster than flow-sensitive analysis. They can be implemented in two ways

-

• Inclusion based Using Andersens’ algorithm

• Equality based Using Steensgaard’s algorithm

On the interprocedural front, context-sensitive pointer analysis remembers the caller-

callee relationship. A context-insensitive analysis does not distinguish between dis-

tinct calls to a procedure. This causes the propagation of data flow values across

interprocedurally invalid paths (i.e. paths in which calls and returns may not match)

resulting in a loss of precision. A context-sensitive analysis restricts the propagation

to valid paths and hence is more precise [6].

3.4.1 Limitations of the existing system

1. Flow-insensitive pointer analysis (though being efficient) lacks precision as

compared to flow-sensitive pointer analysis.

2. Flow-insensitive pointer analysis also produces a larger output than required.This

is because the output generated by flow-insensitive analysis is always a super-

set of the the output generated by flow-sensitive analysis.

3.4.2 Pointer Analysis Variants

1. FLOW-INSENSITIVE CONTEXT-SENSITIVE POINTER ANALYSIS :

This analysis does not take the control flow of the program into account. It

computes what memory locations pointers or pointer expressions may refer

to at any time in program execution. Context-sensitive analysis distinguishes

between various calling contexts. Also, it restricts the propagation of data flow

values to valid paths and hence is more precise than context-insensitive pointer

analysis.

CCEW, Department of Computer Engineering 2016 15

2. FLOW-INSENSITIVE CONTEXT-INSENSITIVE POINTER ANALYSIS :

This analysis is performed using Andersen’s algorithm. Andersen’s algo-

rithm is a subset-based,inclusion-based algorithm used for computing flow-

insensitive points-to information. Andersen’s algorithm supports context-insensitive

analysis. This means that the analysis does not distinguish between different

calling contexts. Also, the validity of paths is not considered. The basic idea

of this algorithm is to view pointer assignments as constraints. Then these

constraints are used to propagate points-to information.

3. FLOW-SENSITIVE CONTEXT-INSENSITIVE POINTER ANALYSIS :

This analysis takes the flow of the program into consideration but the context

is not considered. It does not distinguish between various calling contexts. It

produces separate points-to information at every program statement.

4. FLOW-SENSITIVE CONTEXT-SENSITIVE POINTER ANALYSIS :

This analysis considers both the flow control as well as the context of the pro-

gram to be analyzed. It computes a separate solution for each program point.

Iterative data flow analysis is required to be performed for Flow-Sensitive and

Context-Sensitive Analysis. This analysis is considered to be the most precise

and the most difficult to implement.

3.4.3 Data-Flow Analysis

Data flow analysis(DFA) is used for proving facts about programs. These are tech-

niques that derive information about the flow of data along program execution paths

[7]. Interprocedural DFA extends the scope of data flow analysis across procedure

boundaries [8]. Incorporates the effects of procedure calls in the caller procedures

and calling contexts in the callee procedures.

3.4.3.1 Interprocedural Data Flow Analysis Using Value Contexts

A value context is defined by a particular input data flow value reaching a procedure.

It is used to enumerate the summary flow functions in terms of (input → output)

CCEW, Department of Computer Engineering 2016 16

pairs. In order to compute these pairs, data flow analysis within a procedure is per-

formed separately for each context (i.e. input data flow value). When a new call to a

procedure is encounterd, the pairs are consulted to decide if the procedure needs to

be analysed again.

• If it was already analysed once for the input value, output can be directly

processed.

• Otherwise, a new context is created and the procedure is analysed for this new

context.

CCEW, Department of Computer Engineering 2016 17

CHAPTER 4

PROBLEM DEFINITION AND SCOPE

4.1 PROBLEM STATEMENT

Compare the results of Flow and Context Sensitive as well as Insensitive pointer

analysis methods and observe some useful insights.

4.1.1 Goals and objectives

Compiler Optimization is a technique that transforms a program into a semantically

equivalent program that uses lesser resources such as CPU, memory and thus, en-

ables faster execution of the program thereby increasing the efficiency and utilization

of the processor. Pointer analysis or points-to analysis, a part of code optimisation

techniques, is a static program analysis that determines information on the values of

pointer variables or expressions. Such information offers a static model of a pro-

gram’s heap [3]. The information provided by pointer analysis can be further used

for the optimisations in an optimising compiler.

The goal of the project is to compare the four variants of pointer analysis based on

the parameters of efficiency and precision and gain useful insights from the results

generated.

The implementation can be added as an optimising pass in the GCC compiler. The

comparison information provided as an output will help the optimiser to select the

appropriate variant of pointer analysis to analyse the source code accurately using

minimum resources.

4.1.2 Statement of scope

During the past thirty-five years, hundreds of research papers have been published

on pointer analysis. New pointer analysis algorithms are being developed and com-

pared in order to analyze programs with optimized compiler features. The ongo-

ing research in this field predicts the evolution of faster program analyses. Also,

the implemented code can be used as a pass in GCC for compiler optimization i.e

pointer analysis and can provide some useful results for the study that combines

flow-insensitivity with context-sensitivity and context-insensitivity.

CCEW, Department of Computer Engineering 2016 19

4.2 MAJOR CONSTRAINTS

• The implemented code can perform the static analysis of source codes written

in only C and C++ programming languages.

• The pointer constraints which are not of the form x=&y, x=y, *x=y, x=*y,

*x=&y, *x=*y will not be considered during analysis.

• Pointer arithmetic statements will be ignored during the analysis.

4.3 METHODOLOGIES OF PROBLEM SOLVING AND EFFICIENCY IS-

SUES

The substitute solutions available are implementations which can handle double and

triple pointer statements. As we have observed, generally most of the programs to

be analyzed have the pointer statements of the types x=&y, x=*y, x=y, *x=y, *x=&y

and x=y which has been handled by our implementation. An alternative solution

can be to handle constraints beyond the ones mentioned. We have used the vector

data structure in order to extract the pointer statements. The implementation was

already available with the GCC resource center and hence we have reused the same.

An alternative solution may make use of other data structures such as forward lists,

dequeues and lists in order to perform the same function.

ADVANTAGES:

1. More number of pointer statements can be handled.

2. Using the list data structure for extracting the pointer statements helps in bet-

ter extraction, insertion and moving of the pointer statements withing the con-

tainer for which the iterator has been obtained.

DISADVANTAGES:

1. Complexity of the code is increased.

2. Vectors are relatively more efficient in accessing elements as well as addition

and removal of elements from the end. By using any other data structure, we

will compromise on this efficiency.

CCEW, Department of Computer Engineering 2016 20

4.4 OUTCOME

The implementation will be able to compare among the four types of pointer anal-

ysis variants and provide useful insights regarding precision and efficiency of each

variant.

4.5 APPLICATIONS

• This implementation finds its application at Institutional Level by students and

faculty to understand the pointer analysis techniques easily and their relative

differences by observing the details displayed by it.

• Pointer analysis finds it application in the fields of several client analyses like

typestate verification [9], security analysis [10] and bug detection [11]. All

these fields can benefit from the information derived by the comparison of the

pointer analysis variants as it helps them determine the suitable technique for

their application specific analysis.

4.6 HARDWARE RESOURCES REQUIRED

64 bit / 32 bit Intel processor machine.

4.7 SOFTWARE RESOURCES REQUIRED

1. Operating System: Ubuntu14.04 LTS

2. IDE: None

3. Programming Language: C / C++

4. GCC Version: 4.7.2

5. Additional Libraries:

• Libgmp-dev

• Libmpfr-dev

CCEW, Department of Computer Engineering 2016 21

• Libmpc-dev

• Libcloog-ppl-dev

CCEW, Department of Computer Engineering 2016 22

CHAPTER 5

PROJECT PLAN

5.1 PROJECT ESTIMATES

5.1.1 Reconciled Estimates

5.1.1.1 Time Estimate

Activity Start Date End Date

Requirement Analysis 19/7/16 15/9/16

Project Design 16/9/16 20/10/16

Implementation 10/12/16 30/1/17

Testing 1/2/17 20/2/17

Maintainence 21/2/17 1/3/17

Table 5.1: Time Estimate

5.1.2 Project Resources

5.1.2.1 Hardware Resources

64 bit / 32 bit Intel processor machine.

5.1.2.2 Software Resources

Software Name Version

Ubuntu 14.04

gcc 4.7.2

SPEC Benchmark CPU 2006

make 4.1

Table 5.2: Software Resources

CCEW, Department of Computer Engineering 2016 24

5.2 RISK MANAGEMENT

This section discusses Project risks and the approaches that can be followed to man-

age them. The risks for the Project can be analyzed within the constraints of time

and quality.

5.2.1 Risk Identification and Analysis

Various possible risks are identified as follows :

ID Risk Description Probability
Impact

Schedule Quality Overall

1 Unexpected input Medium Medium High Medium

2 Corruption of files Low Low Medium Low

2 System crashes Low Low High High

Table 5.3: Risk Table

Probability Value Description

High Probability of occurrence is > 75%

Medium Probability of occurrence is 26−75%

Low Probability of occurrence is < 25%

Table 5.4: Risk Probability definitions [2]

Impact Value Description

Very high > 10% Schedule impact or Unacceptable quality

High 5−10% Schedule impact or Some parts of the project have low
quality

Medium < 5% Schedule impact or Barely noticeable degradation in qual-
ity Low Impact on schedule or Quality can be incorporated

Table 5.5: Risk Impact definitions [2]

CCEW, Department of Computer Engineering 2016 25

5.2.2 Overview of Risk Mitigation, Monitoring, Management

Following are the details for each risk.

Risk ID 1
Risk Description Unexpected input
Category Development Environment.
Source Software requirement Specification document.
Probability Medium
Impact Medium
Response Mitigate
Strategy Ignore such inputs eg. pointer arithmetic.
Risk Status Identified

Risk ID 2
Risk Description Corruption of files
Category Development Environment.
Source Software Design Specification documentation review.
Probability Low
Impact High
Response Mitigate
Strategy Taking regular backups of files.
Risk Status Identified

Risk ID 3
Risk Description System crashes
Category Development Environment.
Source Implementation and testing phase.
Probability Low
Impact Very High
Response Accept
Strategy Keep backup of the entire system
Risk Status Identified

CCEW, Department of Computer Engineering 2016 26

5.3 PROJECT SCHEDULE

5.3.1 Project task set

The project is divided into 3 main tasks as follows:

• Task 1: The first task is to map the input file in C/C++ and extract the pointer

statements. These pointer statements will be further processed using the pointer

analysis pass. Pointer statements are stored in a vector recognised by our im-

plementation. The LHS and RHS variables (eg. x,y etc) and indirection (*, &

etc.) is processed to recognise various kinds of pointer statements.

Figure 5.1: Task 1

• Task 2: The next task is to recognise these pointer statements and gener-

ate pointer analysis pass for all possible variants (flow-insensitive context-

insensitive, flow-insensitive context-sensitive, flow-sensitive context-insensitive

and flow-sensitive context-sensitive). This is the basic implementation phase

of the project.

Figure 5.2: Task 2

CCEW, Department of Computer Engineering 2016 27

• Task 3: The final task is to test the pointer analysis pass and compare the results

of all pointer analysis variants.

Figure 5.3: Task 3

5.3.2 Task network

Figure 5.4: Task Network

5.3.3 Timeline Chart

Figure 5.5: Timeline Chart for the project

CCEW, Department of Computer Engineering 2016 28

5.4 TEAM ORGANIZATION

5.4.1 Team structure

The team consists of 3 people. The structure is as follows:

Team Member Roles and Responsibilities

Team Leader Assign tasks to everyone

Requirement Analysis

Documentation

Laboratory Assignments : Mathematical Model

Synopsis

Team Member 1 Literature Survey

Documentation

Laboratory Assignments : IDEA Matrix

Divide and Conquer strategies

UML diagrams

Team Member 2 Requirement Analysis

Documentation

Laboratory Assignments : Test plan

Problem Classification

UML Diagrams

Table 5.6: Team Structure

5.4.2 Management reporting and communication

The roles and responsibilites mentioned in Table 5.6 were communicated to all the

members through regular meetings and discussions. The list of meetings is given

below :

CCEW, Department of Computer Engineering 2016 29

Meeting No. Date Coordinated by Topic of Discussion

1 9/7/16 External Guide Literature Survey

Basics of Pointer Analysis

2 20/7/16 Team Leader Requirement gathering

3 17/8/16 Team Leader Literature Survey

(Solving Pointer Analysis examples)

4 9/9/16 Team Leader Literature Survey

(Solving Pointer Analysis examples)

5 20/9/16 Internal Guide Laboratory Assignments

6 26/9/16 Internal Guide Laboratory Assignments

7 1/10/16 External Guide Available expressions analysis

using value Context method

8 4/10/16 External Guide Installation steps

Internal Guide Concepts required for the implementation

9 4/11/16 External Guide Algorithm for FICS implementation

Changes required to make it FICI

Table 5.7: Meetings Held

CCEW, Department of Computer Engineering 2016 30

CHAPTER 6

SOFTWARE REQUIREMENT

SPECIFICATION

6.1 INTRODUCTION

6.1.1 Purpose and Scope of Document

The purpose of this document is to provide a detailed analysis of different pointer

analysis variants, namely Flow-Insensitive Context-Insensitive, Flow-Insensitive Context-

Sensitive, Flow-Sensitive Context-Insensitive, Flow-Sensitive Context-Sensitive. It

will explain the following:

1. How Context-Sensitivity will add more precision to already efficient Flow-

Insensitive Context-Insensitive analysis.

2. The input required and output generated.

3. The constraints under which the code must execute i.e six constraints of the

form: x=&y, x=y, x=*y, *x=y, *x=&y, x=y

4. Use case scenarios, mathematical model and test cases.

5. Software required for the project.

6.1.2 Overview of responsibilities of Developer

Figure 6.1: Responsibilites of the Developer

CCEW, Department of Computer Engineering 2016 32

6.2 USAGE SCENARIO

This section provides various usage scenarios for the system to be developed.

6.2.1 User profiles

The users for this implementation would be :

1. Teachers who are competent in knowledge of compilers and pointer analysis.

2. Engineering students who have a basic knowledge of compilers and pointer

analysis.

3. Researchers who would like to add their own study in the field of pointer

analysis.

6.2.2 Use-cases

All use-cases for the software are presented. Description of all main Use cases using

use case template is provided.

Sr No. Use Case Includes Actors Description

1 Give the input program Constraints
of the type
x=&y,
x=*y, x=y
etc

User Input C++
file given
by the user

2 Select type of pointer analysis Null User Choose
type of
pointer
analysis

3 Pointer analysis pass Scanning
and parsing

Developer The pointer
analysis
pass is
scanned
and parsed
to generate
the output

Table 6.1: Use Cases

CCEW, Department of Computer Engineering 2016 33

6.2.3 Use Case View

Figure 6.2: Use case diagram

6.3 DATA MODEL AND DESCRIPTION

6.3.1 Data Description

1. Input program: The input file is given by the user in C++. It will contain the

following six constraints:

• x = &y

• x = *y

• x = y

• *x = y

• *x = &y

• *x = *y

2. Types of pointer analysis to be compared:

• Flow-Insensitive Context-Insensitive : In flow-insensitive, order of the

statements does not matter. This means that the analysis does not dis-

tinguish between different calling contexts. Also, the validity of paths is

CCEW, Department of Computer Engineering 2016 34

not considered. The basic idea of this algorithm is to view pointer as-

signments as constraints. Then these constraints are used to propagate

points-to information.

• Flow-Insensitive Context-Sensitive : It does not take the control flow of

the program into account. It computes what memory locations point-

ers or pointer expressions may refer to at any time in program execu-

tion. Context-sensitive analysis distinguishes between various calling

contexts. Also, it restricts the propagation of data flow values to valid

paths and hence is more precise than context-insensitive pointer analysis

• Flow-Sensitive Context-Insensitive : This analysis takes the flow of the

program into consideration but the context is not considered. It does not

distinguish between various calling contexts. It produces separate points-

to information at every program statement.

• Flow-Sensitive Context-Sensitive : This analysis considers both the flow

control as well as the context of the program to be analyzed. It computes

a separate solution for each program point. This analysis is considered

to be the most precise and the most difficult to implement.

3. Interprocedural data flow analysis : Data flow analysis(DFA) is used for prov-

ing facts about programs. These are techniques that derive information about

the flow of data along program execution paths [7]. Interprocedural DFA ex-

tends the scope of data flow analysis across procedure boundaries [8]. In-

corporates the effects of procedure calls in the caller procedures and calling

contexts in the callee procedures.

CCEW, Department of Computer Engineering 2016 35

6.4 FUNCTIONAL MODEL AND DESCRIPTION

6.4.1 Data Flow Diagram

Data Flow Diagram Level 0

Figure 6.3: Data Flow Diagram Level 0

Data Flow Diagram Level 1

Figure 6.4: Data Flow Diagram Level 1

CCEW, Department of Computer Engineering 2016 36

6.4.2 Description of functions

Description of functions in the implementation is as follows:

1. Input file : The language used for the input file is C++ and it will contain the

pointer constraints such as x = &y, x = y, etc. The program can be tested by

various input files using the SPEC banchmark.

2. Perform analysis : Flow-Insensitive Context-Insensitive, Flow-Insensitive Context-

Sensitive, Flow-Sensitive Context-Insensitive and Flow-Sensitive Context-Sensitive

pointer analysis will be performed.

3. Generate pointee set : For each variable of the pointer constraints, the pointee

set will be generated which will further be used to display the output,i.e. the

points-to graph.

4. Generate points-to graph : The variable and its pointee set will constitute the

points-to graph. For each basic block, a points-to graph will be generated.

6.4.3 Non Functional Requirements

• Interface requirements : Hardware interface : No hardware interface required.

Software interface for GCC 4.7.2 :

– libgmp-dev package

– libmpfr-dev package

– libmpc-dev package

– libcloog-ppl-dev package

• Performance Requirements : The output (i.e. the points-to graph) should be

generated within just a fraction of seconds (some milliseconds). It should han-

dle one input file at a time consisting of the pointer constraints. Any constraint

other than the specified six constraints should not be analysed. The points-to

graph should be generated for each basic block.

• Project Quality Attributes :

CCEW, Department of Computer Engineering 2016 37

– Maintainability : For proper input file, expected output is generated. It

displays error conditions if any and notifies appropriate steps to be taken.

– Reliability : The performance of the system is fast and it generates the

correct points-to graph.

– Efficiency : According to the given input file, the system performs Flow-

Insensitive Context-Insensitive, Flow-Insensitive Context-Sensitive, Flow-

Sensitive Context-Sensitive and Flow-Sensitive Context-Insensitive anal-

ysis in optimum time.

– Reusability : The implemented code can be used as a pass in GCC for

compiler optimization i.e pointer analysis and can provide some use-

ful results for the study that combines flow-insensitivity with context-

sensitivity and context-insensitivity.

– Usability : The system is user friendly since the people working on this

software need to have very little knowledge about the internal working

of the tool.

– Testabilty : The testability of the code can be checked using the SPEC

benchmarks.

6.4.4 Design Constraints

• ASSUMPTIONS

It is assumed that input to the system should be given in C++ or C language

and the input file should contain the specified six pointer constraints. Other

type of constraints should be ignored.

• LIMITATIONS

1. The input file will not work if it is in any language other than C or C++.

2. It will ignore live variable information.

CCEW, Department of Computer Engineering 2016 38

6.4.5 Activity Diagram

Figure 6.5: Activity diagram

6.4.6 Software Interface Description

The software interface(s) to the outside world are described as follows:

1. libgmp-dev package

2. libmpfr-dev

3. libmpc-dev

CCEW, Department of Computer Engineering 2016 39

4. libcloog-ppl-dev

5. make utility

6.4.7 State Diagram

Fig.6.6 shows the state transition diagram of the implementation.

Figure 6.6: State transition diagram

CCEW, Department of Computer Engineering 2016 40

CHAPTER 7

DETAILED DESIGN DOCUMENT USING

APPENDIX A AND B

7.1 INTRODUCTION

This document specifies the design that is used to solve the problem.

7.2 ARCHITECTURAL DESIGN

Figure 7.1: Architecture Diagram

7.3 DATA DESIGN (USING APPENDICES A AND B)

7.3.1 Internal software data structure

Tokens are generated by the Lexical Analyser while scanning the input specification

file. A symbol table is generated which stores the tokens, their data type, value

and other related information. This symbol table is used by the Parser for Syntactic

Analysis.

CCEW, Department of Computer Engineering 2016 42

7.3.2 Global data structure

7.3.2.1 Lattice

Lattice is a data structure used to store information about the data flow analysis.

7.3.2.2 Data Flow Variables

The variables are stored in two sets, namely, In and Out, during the data flow analysis

of the input IR. For populating these sets, the global data flow equations are used.

These can be indirectly used to check the generated points-to graph for every context.

CCEW, Department of Computer Engineering 2016 43

CHAPTER 8

SUMMARY AND CONCLUSION

8.1 SUMMARY

This report explains the variants of pointer analysis and the need for their compar-

ison. It presents information regarding data flow analysis, pointer analysis tech-

niques and the parameters to be used for comparison.The implementation aims at

successfully comparing the pointer analysis variants by observing the control flow

graph generated as output. The observations made can further help in determining

the relative importance of the analysis techniques and whether the addition of flow-

sensitivity or context-sensitivity adds any precision when combined with their insen-

sitive variants (flow-insensitive or context-insensitive). The precision, efficiency as

well as the trade-off between the two is also recorded.

The suitable analysis technique can then be selected based on the observations made,

thereby increasing the precision as well as efficiency of analysis. The observations

are to be made programmatically as the design aims at analysing source codes con-

taining thousands of lines of code. The amount of resources required can be de-

creased and the available resources can be used wisely by having the knowledge

about the results of comparison of the pointer analysis variants.

8.2 CONCLUSION

The implementation can be added as a PTA pass in the GCC compiler. An addi-

tional PTA pass can increase the optimising capability of an optimising compiler

such as GCC. The result of the analysis can be used by researchers to aid their fur-

ther research in this area and used by students, faculty and at an Institutional level to

understand the pointer analysis techniques.

CCEW, Department of Computer Engineering 2016 45

REFERENCES

[1] “Pointer analysis:https://en.wikipedia.org.”

[2] R. S. Pressman, Software Engineering (3rd Ed.): A Practitioner’s Approach.

New York, NY, USA: McGraw-Hill, Inc., 1992.

[3] G. B. Yannis Smaragdakis, “Pointer analysis, foundations and trends in pro-

gramming languages vol. 2,” tech. rep., University of Athens, 2013.

[4] J. U. M. S. L. Alfred Aho and R. Sethi, COMPILERS : Principles,Techniques

and Tool. Pearson, 2014.

[5] “Ben hardekopf university of california, santa barbara benh@cs.ucsb.edu.”

[6] U. P. K. R Padhye, “Interprocedural data flow analysis in soot using value con-

texts,” tech. rep., Indian Institute of Technology,Bombay, 2013.

[7] Y. Srikant, “Nptel course slides: Data-flow analysis.”

[8] U. Khedker, “Lecture slides: Interprocedural data flow analysis,” 2015.

[9] S. J. F. E. Y. N. D. G. Ramalingam and E. Geay, “Effective typestate verication

in the presence of aliasing,” 2008.

[10] B. S. W. Chang and C. Lin, “Efficient and extensible security enforcement

using dynamic dataflow analysis,” 2008.

[11] C. L. S. Z. Guyer, “Error checking with client-driven pointer analysis,” 2008.

CCEW, Department of Computer Engineering 2016 47

ANNEXURE A

LABORATORY ASSIGNMENTS ON

PROJECT ANALYSIS OF ALGORITHMIC

DESIGN

Assignment 1
Develop the Problem under consideration and justify feasibility using concepts

of knowledge canvas and IDEA Matrix.

The IDEA Matrix describes how to design a system efficiently by defining the fol-

lowing factors with respect to a system. The IDEA Matrix for this system is as

follows :

I D E A
Increase Drive Educate Accelerate

Precision, Efficiency Improve trade-off Pointer Analysis, Compiler Optimisation
between precision Data Flow Analysis

and efficiency
Improve Deliver Evaluate Associate

Balance between Conclusion Improvement in Code Optimisation
precision and efficiency precision with improved IT systems

Ignore Decrease Eliminate Avoid
More than Time of Ambiguity, Errors Unprocessed constraints

50,000 lines of code* execution in code

Note : * indicates that this value is subject to change based on testing phase.

INCREASE:

Increasing the overall precision as well as efficiency of the pointer analysis.

IMPROVE:

Improving the balance between the precision and efficiency by finding whether con-

text sensitive pointer analysis increases precision when combined with the efficient

but comparatively less precise flow insensitive pointer analysis.

IGNORE:

Ignore programs exceeding 50,000 lines of code.

DRIVE:

Drive Compiler Optimisation by improving the trade-off between efficiency and pre-

cision.

CCEW, Department of Computer Engineering 2016 49

DELIVER:

Deliver a conclusion whether the precision of the efficient flow insensitive analysis

is improved with the addition of context sensitive analysis.

DECREASE:

Decrease the time taken to process the pointer statements.

EDUCATE:

Educate the team members about data flow analysis, pointer analysis and the various

techniques to achieve the same.

EVALUATE:

Evaluate improvement in precision by the addition of context sensitivity to flow in-

sensitive analysis.

ELIMINATE:

Eliminate ambiguity as well as errors in code.

ACCELERATE:

Accelerate compiler optimization through efficient pointer analysis.

ASSOCIATE:

Associate machine independent code optimisation with improved, efficient and safe

IT systems.

AVOID:

Avoid the unprocessed constraints, that is, the constraints which are not of the form

x=&y, x=y, *x=y, x=*y, *x=&y, *x=*y

CCEW, Department of Computer Engineering 2016 50

Assignment 2
Project Problem statement feasibility assessment using NP-Hard, NP-

Complete or satisfiability issues using modern algebra and relevant mathemat-

ical models.

All modules in the project can be classified into P, NP-Complete or NP-Hard classes

as shown below:

Module Class

Flow-Insensitive Context-Insensitive P

Flow-Insensitive Context-Sensitive P

Flow-Sensitive Context-Insensitive P*

Flow-Sensitive Context-Sensitive P*

Measurement and Comparison of Data P

Note : * indicates that this value is subject to change based on the input pro-

gram. If the input program has multiple level pointers or structures, the problem can

become NP-Hard. Such input programs are beyond the scope of this project.

CCEW, Department of Computer Engineering 2016 51

ANNEXURE B

LABORATORY ASSIGNMENTS ON

PROJECT QUALITY AND RELIABILITY

TESTING OF PROJECT DESIGN

Assignment 3
Use of Divide and conquer strategies to exploit distributed or parallel or con-

current processing of the above to identify objects, morphisms, overloading in

functions (if any) and functional relations and any other dependencies.

The modules of our project are as follows:

1. FLOW-INSENSITIVE CONTEXT-SENSITIVE : This analysis does not take

the control flow of the program into account.It computes what memory lo-

cations pointers or pointer expressions may refer to at any time in program

execution. Context-sensitive analysis distinguishes between various calling

contexts. Also, it restricts the propogation of data flow values to valid paths

and hence is more precise than context-insensitive analysis.

2. FLOW-INSENSITIVE CONTEXT-INSENSITIVE : This analysis is performed

using Andersens algorithm. Andersens algorithm is a subset-based, inclusion-

based algorithm used for computing flow-insensitive points-to information.

Andersens algorithm supports context-insensitive analysis. This means that

the analysis does not distinguish between different calling contexts. Also, the

validity of paths is not considered. The basic idea of this algorithm is to view

pointer assignments as constraints. Then these constraints are used to propa-

gate points-to information. The time complexity is O(n 3).

3. FLOW-SENSITIVE CONTEXT-INSENSITIVE POINTER ANALYSIS : This

analysis takes the flow of the program into consideration but the context is not

considered. It does not distinguish between various calling contexts. It pro-

duces separate points-to information at every program statement.

4. FLOW-SENSITIVE CONTEXT-SENSITIVE POINTER ANALYSIS : This

analysis considers both the flow control as well as the context of the program

CCEW, Department of Computer Engineering 2016 53

to be analyzed. It computes a separate solution for each program point. It-

erative data flow analysis is required to be performed for Flow-Sensitive and

Context-Sensitive Analysis. This analysis is considered to be the most precise

and the most difficult to implement.

5. MEASUREMENT AND COMPARISON OF DATA : This module deals with

the measurements (this includes time taken, number of pointer statements,

number of failed constraints, time taken to process each constraint etc.) and

comparison of data recorded from both previous modules. Dierent statistics

can provide valuable insights and the output generated can be used to nd out

if context-sensitivity leads to a signicant increase in precision when combined

with ow-insensitive pointer analysis.

CCEW, Department of Computer Engineering 2016 54

Assignment 4
Use of above to draw functional dependency graphs and relevant Software mod-

eling methods, techniques including UML diagrams or other necessities using

appropriate tools.

State Transition Diagram

Figure B.1: State diagram

CCEW, Department of Computer Engineering 2016 55

Use Case Diagram

Figure B.2: Use case diagram

Activity Diagram

Figure B.3: Activity diagram

CCEW, Department of Computer Engineering 2016 56

Block Diagram

Figure B.4: Block diagram

CCEW, Department of Computer Engineering 2016 57

Assignment 5
Testing of Project problem statement using generated test data (using Mathe-

matical Models, GUI, Function testing Principles if any) selection and appro-

priate use of testing tools.

Test ID Test Case Expected Results Observed Results Pass/Fail

1

The path of the input

file containing the

program to be analysed

is specified

The file exists at the

mentioned path

destination and the

input program to be

analysed is read

successfully

- -

2

Pointee-set formed as a

result of FICI analysis

is given as input

Points-to graph

generated correctly
- -

3

Pointee-set formed as a

result of FICS analysis

is given as input

Points-to graph

generated correctly
- -

4

Pointee-set formed as a

result of FSCS analysis

is given as input

Points-to graph

generated correctly
- -

5

Pointee-set formed as a

result of FSCI analysis

is given as input

Points-to graph

generated correctly
- -

6

Pointer Statements

other than x=*y, x=&y,

x=y, *x=y, *x=&y and

*x=*y are given

Analysis program

ignores them and

increments the failed

constraints counter

- -

7

Programs with pointer

arithmetic statements

are given as input

Analysis Program

ignores them
- -

CCEW, Department of Computer Engineering 2016 58

ANNEXURE C

PROJECT PLANNER

We have used Gantt chart to illustrate the start and end dates of all our project phases

shown in Table 5.1.

Online tool used : SmartSheet

The Gantt chart for our project is as follows:

Figure C.1: Gantt Chart

CCEW, Department of Computer Engineering 2016 60

ANNEXURE D

PLAGIARISM REPORT

This Project Group has successfully completed their Report on

”PRECISION EVALUATION OF POINTER ANALYSIS VARIANTS”

and the report is found to be 98 % plagiarism free as per smallseotools.com.

CCEW, Department of Computer Engineering 2016 62

CCEW, Department of Computer Engineering 2016 63

CCEW, Department of Computer Engineering 2016 64

	Synopsis
	Project Title
	 Project Option
	Internal Guide
	 Sponsorship and External Guide
	Technical Keywords
	Problem Statement
	Abstract
	Goals and Objectives
	Relevant mathematics associated with the Project
	Review of Conference/Journal Papers supporting Project idea
	Plan of Project Execution

	Technical Keywords
	Area of Project
	Technical Keywords

	Introduction
	Background
	Project Idea
	Motivation of the Project
	Literature Survey
	Limitations of the existing system
	Pointer Analysis Variants
	Data-Flow Analysis

	Problem Definition and scope
	Problem Statement
	Goals and objectives
	Statement of scope

	Major Constraints
	Methodologies of Problem solving and efficiency issues
	Outcome
	Applications
	Hardware Resources Required
	Software Resources Required

	Project Plan
	Project Estimates
	Reconciled Estimates
	Project Resources

	Risk Management
	Risk Identification and Analysis
	Overview of Risk Mitigation, Monitoring, Management

	Project Schedule
	Project task set
	Task network
	Timeline Chart

	Team Organization
	Team structure
	Management reporting and communication

	Software requirement specification
	Introduction
	Purpose and Scope of Document
	Overview of responsibilities of Developer

	Usage Scenario
	User profiles
	Use-cases
	Use Case View

	Data Model and Description
	Data Description

	Functional Model and Description
	Data Flow Diagram
	Description of functions
	Non Functional Requirements
	Design Constraints
	Activity Diagram
	Software Interface Description
	State Diagram

	Detailed Design Document using Appendix A and B
	Introduction
	Architectural Design
	Data design (using Appendices A and B)
	Internal software data structure
	Global data structure

	Summary and Conclusion
	Summary
	Conclusion

	Annexure Laboratory assignments on Project Analysis of Algorithmic Design
	Annexure Laboratory assignments on Project Quality and Reliability Testing of Project Design
	Annexure Project Planner
	Annexure Plagiarism Report

