CHENNAI MATHEMATICAL INSTITUTE

ciny

Call Graph Construction for Spring
Framework

Author: Supervisor:

Mugdha Khedkar Prof. Dr. Eric Bodden
Dr. Johannes Spath

A thesis submitted in fulfillment of the requirements
for the degree

Master of Science
in
Computer Science
May 8, 2020

Declaration of Authorship

I, Mugdha Khedkar, declare that this thesis titled, “Call Graph Construction for
Spring Framework” and the work presented in it are my own. I confirm that:

This work was done wholly or mainly while in candidature for a research de-
gree at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where [have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Name: Mugdha Khedkar
Date: 8th May 2020

ii

CHENNAI MATHEMATICAL INSTITUTE

Abstract

Master of Science

Call Graph Construction for Spring Framework

by Mugdha Khedkar

Call graphs[28] maintain the record of the calls between methods in a given pro-
gram. Such information is necessary for compilers to determine whether specific
optimizations can be applied. Additionally, numerous software engineering tools
use call graph information to help software engineers increase their understanding
of a program][8].

Constructing precise call graphs is crucial for any practical static analysis that
needs to handle a program consisting of multiple procedures and procedure calls.
Call graph construction in the presence of direct calls is straightforward. However,
indirect calls (supported by features such as function pointers, virtual functions,
and reflection etc.) hide the caller callee relationships statically. This complicates
the construction of call graphs resulting in either imprecision (spurious caller-callee
relationships) or unsoundness (missed caller-callee relationships). This, in turn, af-
fects the precision or soundness of a client analysis that uses such a call graph. The
objective of this thesis is to explore the issues in call graph construction for web
frameworks like Spring and to study how the existing algorithms fare on the task.

Programs written in Spring framework have two unique features: they have an
abundant use of annotations (in some cases, annotations decide the entry points of
the program) and a separate framework for Inversion of Control[29]. These two
features lead to major unsoundness in existing call graph construction algorithms.
The client analyses that use these call graphs end up missing critical findings.

One contribution of this thesis is the observation that the unsoundness is because
of reflective calls in the Spring API. Static analysis of the Reflection API has attracted
significant research effort since the past few decades, some such methods have been
discussed in this thesis.

Another contribution of this thesis is that it presents a concept for a new hybrid
analysis algorithm. This algorithm generates a simple, non-reflective version of the
input Spring program written in Java. Such an algorithm would work on programs
written in web frameworks designed on top of the Spring framework and the call
graph constructed for these programs would be sound and precise, as required.

1ii

Acknowledgements

It gives me great pleasure in presenting the project report on

‘CALL GRAPH CONSTRUCTION FOR SPRING FRAMEWORK’

I take this opportunity to express my profound gratitude to my supervisors Prof. Dr.
Eric Bodden and Dr. Johannes Spiith for their exemplary guidance, monitoring and
constant encouragement throughout the course of this thesis work. Everything that
I'learnt from them will help me a long way in the journey of life and the next adven-
ture I embark upon.

This research project would not have been possible without the support of the Soft-
ware Engineering group of Universitit Paderborn. I am very grateful for their valuable
suggestions. They became my first friends in Germany and this help is immeasur-
able.

My special thanks to all the staff members of Chennai Mathematical Institute for
their continuous support. A special mention to my faculty advisor, Prof. B Srivathsan
who has been a constant help throughout my time at CMI.

No words are enough to express the gratitude I have towards my parents and my
sister. Staying thousands of miles away from them was not easy but their constant
support made this journey worthwhile. A special thanks to my friends as well.

You all made this journey a great experience, and for this I cannot thank you all
enough.

Mugdha Khedkar
Chennai Mathematical Institute

To Aai, Baba and Sneha who lived in two timezones for three months...

iv

Contents

Declaration of Authorship

Abstract

Acknowledgements

1 Introduction

2 Background

21 CallGraph
2.2 Call Graph Construction Algorithms
221 Class Hierarchy Analysis
222 RapidType Analysis
223 Variable Type Analysis
224 SPARK e
2.3 Spring Framework 0 oL
23.1 Spring Architectureo oL
232 InversionofControl
233 Spring Annotations o oL
234 AnExample oo o o
24 Reflection. e
241 ObjectCreation
242 MethodInvocation
243 Accessing Fields
244 Applications of Reflection
245 Reflection in Static Analysis
25 Summary
3 Illustrating Unsoundness in Call Graph Construction
3.1 A Simple Spring Application 0oL
3.2 Spring Application with Core Annotations
33 Summary
4 Our Solution
41 TheKeyldea.
42 BeanDependenceGraph
4.3 Handling Different Containers and Scopes
43.1 SpringloCcontainers
432 BeanScopes o e
44 Algorithm
45 AnExample
46 Limitations e e e e e
47 Summary

ii

iii

5 Related Work

5.1 General Call Graph Construction
5.1.1 Precise Analysis of String Expressions
5.1.2 Call Graph Discovery using Points-to Analysis
513 Averroes e
5.1.4 Call Graph Construction for Java Libraries
5.2 Reflection and Framework Handling for Call Graph Construction . . .
521 DOOP Framework
522 Tamiflex
52.3 Framework for Frameworks.
5.2.4 Self-Inferencing Reflection Resolution forJava
52,5 Sound Static Handling of Java Reflection

53 Summary
6 Conclusion

Bibliography

vi

1 Introduction

Call graph is a static abstraction of all the methods that can be called by a program at
any program point. Call graphs[28] maintain the record of the calls between meth-
ods in a given program. Such information is necessary for compilers to determine
whether specific optimizations can be applied. For example, a compiler can use a
call graph to eliminate unreachable code (e.g. debugging code and unused parts
of libraries) or to propagate constants across a program. Additionally, numerous
software engineering tools use call graph information to help software engineers
increase their understanding of a program[8]. For example, an integrated develop-
ment environment (IDE) like Eclipse uses call graph information to provide features
like code navigation and completion, automated code refactoring etc. Call graphs
can also be used to detect anomalies or code injection attacks[9].

Constructing precise call graphs is crucial for any static analysis that needs to
handle a program consisting of multiple procedures and procedure calls. Dealing
with direct calls is straightforward. However, the presence of indirect calls (sup-
ported by features such as function pointers, virtual functions, and reflection etc.)
complicates the construction of call graphs because they hide the caller-callee rela-
tionships statically. This results in either imprecision (spurious caller-callee relation-
ships) or unsoundness (missed caller-callee relationships)[16]. This, in turn, affects
the precision or soundness of a client analysis that uses such a call graph.

Indirect calls are also the main source of imprecision in a call graph of a Spring
application. The core features of the Spring Framework can be used in developing
any Java application, but there are extensions for building web applications on top
of the Java Enterprise Edition platform. Spring’s layered architecture organizes the
middle tier objects. Separating all the layers eliminates the need to use a variety of
custom-property file formats. The Spring layered architecture is discussed in detail
in Section 2.7. Spring Framework is non-invasive and uses POJO and POJI models:

e POJO (Plain Old Java Objects): A Java class not coupled with any technology
or any framework.

e POJI (Plain Old Java Interfaces): A Java interface not coupled with any tech-
nology or any framework.

For running the Spring application, a server is not mandatory. Spring has its own
container for running any application. It does not need a server and thus prevents
the hassles of saving the program again and again when restarting a server. Spring
Framework is loosely coupled because it has concepts like Dependency Injection
(Section 2.3.2), Inversion of Control etc. These features help in reducing dependency
and increasing the modularity within the code. All these features make Spring ex-
tremely popular.

A Spring application consists of an XML file which defines beans (Spring objects)
and Java files that define the classes and the main method. Listings 1.1, 1.2,1.3, 1.4
illustrate a sample Spring application. We discuss more about Spring Framework in
Chapter 2.

Chapter 1. Introduction 2

1| package Education;

3| public class Student

o

5 private Integer age;

6 private String name;

8 public void setAge(Integer age) ({
9 this.age = age;

10 }

11 public Integer getAge() {

12 return age;

13 }

14 public void setName(String name) {
15 this .name = name;

16 }

17 public String getName() {

18 return name;

19 }

20| }

LISTING 1.1: A Spring Application (1): Student.java

1| package Education;

3| public class Profile

I

5 private Student student;

6

7 public void printAge () {

8 System.out. println("Age : " + student.getAge());
9 }

10 public void printName() {

11 System.out. println ("Name : " + student.getName());
12 }

13|}

LISTING 1.2: A Spring Application (2): Profile.java

| public class MainApp

| |

3| public static void main(String[] args)

o

5 ApplicationContext context = new ClassPathXmlApplicationContext("Bean.
xml") ;

6 Profile profile = (Profile) context.getBean("profile");

7 profile . printName () ;

8 profile.printAge();

9

0] }

LISTING 1.3: A Spring Application (3): MainApp.java

® N o G W -

Chapter 1. Introduction 3

<bean id = "profile" class = "Education.Profile"/>
<!l— Definition for studentl bean —>
<bean id = "studentl" class = "Education.Student">
<property name = "name" value = "Zara" />
<property name = "age" value = "11"/>
</bean>
<!— Definition for student2 bean —>
<bean id = "student2" class = "Education.Student">
<property name = "name" value = "Neha" />
<property name = "age" value = "2"/>
</bean>
3| </beans>

<?xml version = "1.0" encoding = "UTF-8"?>

<beans xmlns = "http://www.springframework.org/schema/beans"
xmlns:xsi = "http://mwww.w3.org/2001/XMLSchema—instance"
xmlns:context = "http://www.springframework.org/schema/context"
xsi:schemaLocation = "http://www.springframework.org/schema/beans
http://www. springframework . org/schema/beans/spring—beans —3.0.xsd
http://www.springframework . org/schema/context
http://www.springframework . org/schema/context/spring—context —3.0.xsd">

<context:component—scan base—package="Education"/>
<context:annotation—config/>

<!—Definition for profile bean —>

LISTING 1.4: A Spring Application (4): Beans.xml

Spring applications are difficult to analyze statically due to programming fea-
tures like reflection (Section 2.4) and annotations (Section 2.3.3). The motivation
behind this Master’s thesis is finding out which features in Spring hinder sound and
precise call graph construction and what can be done to ensure soundness in call
graph construction algorithms and precision in the resultant call graphs.

There are various web frameworks built on top of the Spring framework. By
studying the soundness in call graph construction algorithms and precision in the
resultant call graphs, we can extend this study further to other web frameworks.

The main contributions of this thesis are summarized below:

1. A detailed study of call graph construction algorithms and concrete reasons
why these algorithms are unsound and unable to construct precise call graphs
for web frameworks like Spring.

2. A concept for a hybrid analysis (a combination of static and dynamic analy-
sis) algorithm to ensure soundness in call graph construction algorithms and
construction of precise call graphs for Spring.

This thesis is structured as follows. Chapter 2 discusses the technical concepts needed
to understand the process of call graph construction for Spring framework. These
include call graphs (Section 2.1), call graph construction algorithms (Section 2.2),
Spring framework (Section 2.3) and Reflection (Section 2.4). Chapter 3 uses two ex-
amples to illustrate unsoundness in call graphs. These examples are illustrated in
Section 3.1 and Section 3.2. Chapter 4 discusses a proposed hybrid analysis concept
to deal with unsoundness in call graph construction algorithms. Chapter 5 shows
some work done in the past to deal with reflection in static analyses. Finally, Chap-
ter 6 concludes this work and discusses the possible directions this work could take
in the future.

2 Background

This chapter provides the technical concepts needed to better understand call graph
construction for Spring framework. We discuss call graphs (Section 2.1), call graph
construction algorithms (Section 2.2), Spring framework (Section 2.3) and Reflection
(Section 2.4).

2.1 Call Graph

A call graph is a static abstraction of the caller-callee relation between the methods in
a program. A call graph is a graph that consists of nodes (representing procedures)
linked by directed edges (representing calls from one procedure to another). An
interprocedural analysis requires an approximation of the call graph. A call graph
construction algorithm is said to be sound if the resulting call graph does not miss
any caller-callee relationship. A call graph is precise if it does not include caller-
callee relationships which are spurious with respect to any given potential execution.

Call graphs can be constructed in two ways: either by examining the source
code or by observing the caller-callee relationships during execution (using profil-
ing). In C, examining the source code to construct a call graph is difficult because of
function pointers. In C++, we additionally have virtual functions. In Java and web
frameworks like Spring, there is use of reflection and all calls are virtual by default.
Handling programming features like reflection, annotations have become crucial to
getting a sound and precise call graph[28].

2.2 Call Graph Construction Algorithms

We will use the example in Listing 2.1 throughout this Section to illustrate the dif-
ferences between some well known call graph construction algorithms: CHA (Sec-
tion 2.2.1), RTA (Section 2.2.2), VTA (Section 2.2.3) and SPARK (Section 2.2.4).

The example consists of class Shape and its subclasses Quadrilateral and Circle.
Square is further inherited by Quadrilateral. All these classes have a method print().
We want to see which print method is called when we call b2.print(c2) (Line 9 in
Listing 2.1).

2.2.1 Class Hierarchy Analysis

Class Hierarchy Analysis[6] is a standard method for conservatively approximating
the run-time types of receivers. To implement this analysis, the compiler gains static
information from the class hierarchy, which is a tree constructed based on a class
subclass relation. The class hierarchy is studied to approximate the types that could
have called a method of that class.

The class hierarchy of our running example is shown in Figure 2.1. The function
print() is a part of classes Shape, Quadrilateral, Square and Circle. The algorithm looks
at the class hierarchy and calls print() for all classes belonging to the subtree with

S NSO OV

Chapter 2. Background 5

public class Example

{

public static void main(String[] args)

{

Shape bl = new Quadrilateral ();
Shape cl1 = new Square();

Shape b2 = bl;

Shape c2 = c1;

b2.print(c2);

1}pub1ic static class Shape extends Object

! public void print(Shape object) {}

;ublic static class Quadrilateral extends Shape
! public void print(Shape object) {}

I}aublic static class Square extends Quadrilateral
{ public void print(Shape object) {}

}

public static class Circle extends Shape

{
public void print(Shape object) {}

)
}

LISTING 2.1: Call Graph Construction Example

Shape as the root (these include Shape, Quadrilateral, Square and Circle) ignoring the
classes are instantiated or which types are allocated in the program. The call graph
generated by CHA is shown in Figure 2.2. As evident from the figure, this graph
is an overapproximation. The print function of class Circle would never be a part
of any execution of the program because there is no object belonging to class Circle
anywhere in the program.

CHA is a very simple flow-insensitive algorithm. A flow-insensitive algorithm
does not take into consideration the order of program statements. It is very efficient
because subclass relations are easy to compute. The resulting call graph contains
edges for all calls that the program could execute. There is very little scope for un-
soundness. It is most effective in situations where the compiler has access to the
source code of the entire program, since the whole inheritance hierarchy can be ex-
amined and the locations of all method definitions can be determined.

The disadvantage of the resulting graph is that it is very imprecise. The calls by
most edges will never be made.

2.2.2 Rapid Type Analysis

Rapid Type Analysis[6] starts with a call graph generated by performing Class Hier-
archy Analysis. It uses information about instantiated classes to further reduce these
to exclude those that have not been instantiated, thereby reducing the size of the call
graph. RTA is a refining algorithm. This version of RTA is called pessimistic RTA
since it starts with the complete conservative call graph built by CHA and looks for
all instantiations in method in that call graph. This may find an instantiation which
is in a method that should really be removed from the call graph[25].

Chapter 2. Background 6

Class Shape
print()
Class Quadrilateral Class Circle
: Shape : Shape
print() print()

T

Class Square :
Quadrilateral
print(}

FIGURE 2.1: Class Hierarchy

Example:
main(...)

Quadrilateral:: | Quadrilateral:: || Square:: Square:: Shape:: Circle::
Quadrilateral() print() Square() print() print() print()

FIGURE 2.2: CHA Call Graph

For the given example, RTA refines the CHA call graph (Figure 2.2) by removing
the classes not instantiatated (for this example, class Circle). The refined call graph
is illustrated in Figure 2.3.

RTA inherits the limitations and benefits of CHA: it must analyze the complete
program. Like CHA, RTA is flow-insensitive and does not keep per-statement infor-
mation, making it very fast.

2.2.3 Variable Type Analysis

The idea of Variable Type Analysis[6] is to start at every allocation site and record
its type. Then the algorithm looks at every assignment and propagates its effects by
building a graph.

For the given example, VTA looks at the allocation sites and only includes types
associated with them in the final call graph. The allocation sites are of type Quadri-
lateral and Square. Hence they are the only classes recorded in the final call graph.
The final call graph is illustrated in Figure 2.4.

Chapter 2. Background 7

Example::
main(...)
L
Quadrilateral:: Quadrilateral:: Square:: Square:: Shape::
Quadrilateral() print{) Square() print() print()

FIGURE 2.3: RTA Call Graph

Example::
main(...)

Quadrilateral: Quadrilateral:: Square:: Square::
print() Quadrilateral() print() Square()

FIGURE 2.4: VTA Call Graph

The algorithm looks remarkably similar to RTA in that it is a fixed point algo-
rithm using a worklist. The difference between VTA and RTA is that the latter ig-
nores type allocation sites. Since we are considering much more information than
RTA (RTA ignores all assignments and VTA iterates over them), the cost of running
VTA is much higher. In most cases the precision of VTA is more than RTA.

2.24 SPARK

The Soot Pointer Analysis Research Kit (SPARK)[11] is a flexible framework for ex-
perimenting with points-to analyses for Java built on top of Soot.

Soot[26] is a Java optimization framework. It provides some intermediate rep-
resentations for analyzing and transforming Java bytecode. One such intermediate
representation is Jimple, a typed three-address intermediate representation suitable
for optimization. Soot accepts as input the Java byte code and transforms it into Jim-
ple. It then performs the suitable analysis and optionally converts the code back to
Java byte code. SPARK is built on top of Soot. It supports both subset-based (Ander-
sen[3]) and equality-based (Steensgaard[24]) flow-insensitive pointer analyses. The
results of SPARK can be used by other analyses and transformations in Soot.

The execution of SPARK can be divided into three stages:

1. Pointer assignment graph construction.
2. Pointer assignment graph simplification.

3. Points-to set propagation.

Chapter 2. Background 8

Statement Edge Example

Allocation Edge: a: dist = new C() ®—' X x =new X()
Assignment Edge: dist = src @—> X=y

Store Edge: dist.f = src @—' xf=y

Load Edge: dist = src.f @ x =y.f

TABLE 2.1: Pointer Assignment Graph Construction

SPARK uses a pointer assignment graph as its internal representation of the pro-
gram being analyzed. The first stage of SPARK is the pointer assignment graph
builder which determines how features of the program, such as field references, ar-
ray element references and parameters passed to methods are represented.

The nodes in the pointer assignment graph are connected with four types of
edges reflecting the pointer flow, corresponding to the four types of constraints im-
posed by the pointer-related instructions in the source program (illustrated in Ta-
ble 2.1):

e Allocation edge: It is an edge from an allocation node to a variable node. It
represents an assignment of pointers to the objects represented by the alloca-
tion node to the location represented by the variable node. In the Table 2.1, a is
the allocation node and dist is the variable node.

e Assignment edge: It is an edge from a variable node to another variable node.
It represents an assignment from the location represented by the first variable
node to the location represented by the second variable node. In the Table 2.1,
src and dist are the variable nodes.

e Store edge: It is an edge from a variable node to a field reference node. It
represents a store from the location represented by the variable node to the
appropriate field of some object pointed to by the base of the field reference
node. In the Table 2.1, src is the variable node and dist.f is the field reference
node.

e Load edge: It is an edge from a field reference node to a variable node. It rep-
resents a load from the appropriate field of some object pointed to by the base
of the field reference node to the location represented by the variable node. In
the Table 2.1, dist is the variable node and src.f is the field reference node.

Chapter 2. Background 9

public class Example
2|4

public static void main(String[]

| args)
| C—()—
5 Shape bl new Quadrilateral () ;

6 Shape cl1 = new Square();
7 Shape b2 bl;

8 Shape c¢2 = cl; @
9 b2.print(c2);

FIGURE 2.5: Pointer
LISTING 2.2: SPARK: Assignment Graph
Input Program

Example::

main(...)
Quadrilateral:: Square:: Quadrilateral::
Quadrilateral() Square() print()

FIGURE 2.6: SPARK Call Graph

The pointer assignment graph may then be simplified by merging nodes that are
known to have the same points-to sets. This simplification reduces the amount of
processing required to compute the points-to sets. Finally, the points-to set propa-
gator computes the points-to set for each variable by propagating sets along assign-
ments in the program (which are represented by edges in the pointer assignment
graph).

For a call v.foo(), SPARK can overestimate the set of receivers through the set
points-to(v) that it computes: if v can point to an object of type Foo, then Foo.foo()
is a possible receiver of the call v.foo(). To every call target determined that way,
SPARK inserts an edge into the call graph [4].

For our running example illustrated in Listing 2.2, SPARK constructs a pointer
assignment graph depicted in Figure 2.5. Allocation nodes (5 and 6) are the line
numbers where the variables b1 and c1 have been instantiated. From this pointer as-
signment graph, SPARK finds the type of b2. Since b1 points to b2, SPARK concludes
that the type of b2 is same as that of b1 (Quadrilateral). Thus SPARK only calls the
print method of class Quadrilateral. The final call graph is illustrated in Figure 2.6.

Chapter 2. Background 10

Data Access | Integration Web (MVC | Remoting)

JDBC ORM
WebSocket Servlet

OXM JMS

Web Portlet

Transactions

Core Container

Core Context

FIGURE 2.7: Spring Architecture

2.3 Spring Framework

The Spring Framework[21][30] provides a comprehensive programming and con-
figuration model for modern Java-based enterprise applications on any kind of de-
ployment platform. It is commonly used for web applications. It is an application
framework and inversion of control container for the Java platform. Section 2.3.4
provides a complete example of a Spring application.

2.3.1 Spring Architecture

Spring has a modular architecture as shown in Figure 2.7[20]. Some of the major
components of the architecture are:

e Spring Core Container: The Spring container is at the core of the Spring Frame-
work. It uses dependency injection to manage the components that make up
an application. The container gets its instructions on what objects to instanti-
ate, configure, and assemble by reading the configuration metadata provided.
The configuration metadata can be represented either by XML, Java annota-
tions or Java code. The container will then create the objects, wire them to-
gether, configure them and manage their complete life cycle from creation till
destruction[22].

e Spring Beans: The objects that form the backbone of any Spring application
and that are managed by the Spring IoC container are called beans. A bean
is an object that is instantiated, assembled and managed by a Spring IoC con-
tainer. These beans are created with the configuration metadata that is sup-
plied to the container. The metadata can be a bean configuration file or it can

Chapter 2. Background 11

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns = "http://www.springframework.org/schema/beans"

<context:component—scan base—package="Education"/>

<!—Definition for profile bean —>

<bean id = "profile" class = "Education.Profile"/>
<!l— Definition for studentl bean —>
<bean id = "studentl" class = "Education.Student">
<property name = "name" value = "Zara" />
<property name = "age" value = "11"/>
</bean>
<!— Definition for student2 bean —>
<bean id = "student2" class = "Education.Student">
<property name = "name" value = "Neha" />
<property name = "age" value = "2"/>
</bean>
3| </beans>

'

xmlns:xsi = "http://mwww.w3.org/2001/XMLSchema—instance'
xmlns:context = "http://www.springframework.org/schema/context"
xsi:schemaLocation = "http://www.springframework.org/schema/beans
http://www. springframework . org/schema/beans/spring—beans —3.0.xsd
http://www.springframework . org/schema/context
http://www.springframework . org/schema/context/spring—context —3.0.xsd">

<context:annotation—config/>

LISTING 2.3: Bean Configuration File: Beans.xml

be using Spring annotations (Section 2.3.3)[22]. Beans.xml (Listing 2.3) defines
three beans: profile, studentl and student2. All three of them have classes asso-
ciated with them and (may) have properties associated with them.

o Context: Context module builds on Core and Bean modules and is a medium
to access the objects that have been instantiated by the core.

e SpEL: SpEL module provides a powerful expression language to query and
manipulate object graph at runtime. It was created so Spring could have a sin-
gle well supported expression language that can be used across all the products
in the Spring portfolio.

e Data Access/Integration : This layer consists of the JDBC, ORM, OXM, JMS
and Transaction modules which are essentially all modules for JDBC related
coding or XML mapping or transaction management.

e Web: The Web layer consists of the Web, Web-MVC, Web-Socket, and Web-
Portlet modules which are used to handle Spring’s Model-View-Controller im-
plementation.

e Other modules: A few other important modules are as follows:

— AOQP: This module provides an aspect-oriented programming implemen-
tation that helps increase modularity by allowing separation into distinct
parts called concerns.

— Aspects: It provides integration with Aspect], a powerful and mature
AOP framework.

— Instrumentation: It provides class instrumentation support and class loader
implementations to be used in certain application servers.

W N

Chapter 2. Background 12

— Messaging: It provides support for STOMP as the WebSocket sub-protocol
to use in applications. It also supports an annotation programming model
for routing and processing STOMP messages from WebSocket clients.

- Test: It supports the testing of Spring components with JUnit or TestNG
frameworks.

2.3.2 Inversion of Control

Inversion of control (IoC)[29] is a programming principle that inverts the flow of
control as compared to traditional control flow. In IoC, custom-written portions of a
computer program receive the flow of control from a generic framework[29].

A software architecture with this design inverts control as compared to tradi-
tional procedural programming. In IoC, the framework takes care of custom code.
Inversion of control is used to increase modularity of the program and make it ex-
tensible.

Dependency Injection is a way of inverting control in Spring. Every Java-based
application references object that interact with each other to present what the end-
user sees as a working application. When writing a complex Java application, the
application classes should be as independent as possible of other Java classes, to
test them independently of other classes while unit testing and also to increase the
possibility to reuse them. Dependency Injection (or sometime called wiring) helps
in gluing these classes together and at the same time keeping them independent[22].

Consider an application which has a text editor component and we want to pro-
vide a word counter. A typical code would look something like this:

public class TextEditor
{

private WordCount wordCount;

public TextEditor ()
{

wordCount = new WordCount() ;

}

In the code snippet above, we have created a dependency between TextEditor and
WordCount. In an inversion of control scenario, we would instead do something like
this:

public class TextEditor
{

private WordCount wordCount;

public TextEditor (WordCount wordCount)
{

}

this .wordCount = wordCount;

Here, the TextEditor should not worry about WordCount implementation. Word-
Count will be implemented independently and will be provided to TextEditor at the
time of TextEditor instantiation. This entire procedure is controlled by the Spring

Chapter 2. Background 13

Framework. Here, we have removed object creation from the TextEditor and the de-
pendency (i.e. class WordCount) is being injected into the class TextEditor through a
class constructor[22].

The second method of injecting dependency is through Setter Methods of the
TextEditor class where we will create a WordCount instance. This instance will be
used to call setter methods to initialize TextEditor’s properties.

Thus, dependency injection exists in two major variants:

1. Constructor-based DI: It is accomplished when the container invokes a class
constructor with a number of arguments, each representing a dependency on
the other class.

2. Setter-based DI: It is accomplished by the container calling setter methods on
your beans after invoking a no-argument constructor or no-argument static
factory method to instantiate your bean.

2.3.3 Spring Annotations

An XML file is used to describe the bean configuration in a Spring application. In-
stead of using XML to describe a bean wiring, the bean configuration can be moved
into the component class itself by using annotations on the relevant class, method, or
field declaration. Annotation injection is performed before XML injection. Thus, the
latter configuration will override the former for properties wired through both ap-
proaches. Once <context:annotation-config/> is configured, the code can be annotated
to indicate that Spring should automatically wire values into properties, methods,
and constructors[18]. Some important annotations are as follows:

e @Configuration: Indicates that the class can be used by the Spring IoC container
as a source of bean definitions.

e @Bean: Marks a factory method which instantiates a Spring bean. The return
value of this method is instantiated as a Spring bean. Consider the Java file
below:

@Configuration
public class A

{

w N

@Bean

public B b()
o

7 return new B();

S

SIS

The same information can be represented as an XML file:

<beans>
<bean id = "b" class = "package.B" />
3| </beans>

N

e @Autowired: Marks a dependency which Spring is going to resolve and inject.
It can be used with a constructor, setter or field injection.

Chapter 2. Background 14

@Configuration
public class Profile

{

@Autowired
@Qualifier ("studentl")
private Student student;

LISTING 2.4: Example of @Autowired: Profile java

@Qualifier: Used along with @Autowired to provide the bean id or bean name
to be used in ambiguous situations. It can be used with a constructor, setter,
or field injection. Consider the file Profile.java (Listing 2.4). We have used the
@Autowire annotation to wire the student bean into the Profile class. In Beans.xml
(Listing 2.3), since there are two beans student1 and student2 of the type Student,
we need to use the @Qualifier annotation. The absence of @Qualifier throws an
ambiguous bean exception.

@ComponentScan: Specifies which packages contain classes that are annotated.

@Lazy: By default, beans and components get initialized eagerly. This behavior
can be changed using this annotation. Can be used with @Bean or @Component.
If annotated, the component/bean will not be initialized until another bean
explicitly references it and it is needed for the application to run smoothly.

@Value: Can be used for assigning default values to fields, reading environ-
ment variables and setting default values for parameters if used within a method
or constructor.

@DependsOn: 1If a bean depends on some other beans for correct instantiation,
Spring can guarantee that all the beans it depends on will be created before it.
@DependsOn annotation specifies the dependence relation.

@Primary: The @Primary annotation is often used alongside the @Qualifier an-
notation. Used to define the "default" bean for autowiring when no further
information is available.

@Scope: When defining a <bean>, there is an option to declare a scope for that
bean. For example, to force Spring to produce a new bean instance each time
one is needed, the bean’s scope attribute should be defined as prototype. The
Spring Framework supports the following scopes:

1. singleton: Scopes the bean definition to a single instance per Spring IoC
container (default). The default scope is always singleton. If one and only
one instance of a bean is needed, the scope property can be set to singleton
in the bean configuration file.

2. prototype: Scopes a single bean definition to have any number of object
instances. The Spring IoC container creates a new bean instance of the
object every time a request for that specific bean is made.

3. request: Warrants the instantiation of a single bean for each HTTP request.
Only valid in the context of a web-aware Spring ApplicationContext.

Chapter 2. Background 15

S NSO OV

20

package Education;

public class Student

{

private Integer age;
private String name;

public void setAge(Integer age) {
this.age = age;

}

public Integer getAge() {
return age;

}

public void setName(String name) {
this .name = name;

}

public String getName() {
return name;

}

LISTING 2.5: A Simple Spring Example (1): Student.java

package Education;

{

3| public class Profile

private Student student;

public void printAge () {

}

"

System.out. println ("Age : + student.getAge());

public void printName() {

}

System.out. println("Name : " + student.getName());

2.34

LISTING 2.6: A Simple Spring Example (2): Profile java

4. session: Instantiates the annotated bean with a lifecycle-dependent of the
HTTP session.

5. application: Works similarly to the singleton scope. An application scoped
bean’s life cycle depends on the application, or rather, the ServletContext.

6. websocket: Ties the bean’s life cycle to the life cycle of the WebSocket’s
session[19].

An Example

Let us consider an example application written in Spring. It consists of the following

files:

Java files: The file Student.java (Listing 2.5) defines the class Student with
its getter and setter methods. Profile.java (Listing 2.6) defines the class Pro-
tile and injects the dependency to a Student object. The main class MainApp
(Listing 2.7) creates an IoC container for the bean configuration file Beans.xml

Chapter 2. Background 16

g W N =

public class MainApp
{
public static void main(String[] args)
{
ApplicationContext context = new ClassPathXmlApplicationContext("Bean.
xml") ;
Profile profile = (Profile) context.getBean("profile");
profile . printName () ;
profile . printAge();
}
}

LISTING 2.7: A Simple Spring Example (3): MainApp.java

<?xml version = "1.0" encoding = "UTF-8"?>

<beans xmlns = "http://www.springframework.org/schema/beans"
xmlns:xsi = "http://mwww.w3.org/2001/XMLSchema—instance"
xmlns:context = "http://www.springframework.org/schema/context"
xsitschemaLocation = "http://www.springframework.org/schema/beans
http://www. springframework . org/schema/beans/spring—beans —3.0.xsd
http://www.springframework . org/schema/context
http://www.springframework . org/schema/context/spring—context —3.0.xsd">

<context:component—scan base—package="Education"/>
<context:annotation—config/>

<!—Definition for profile bean —>

<bean id = "profile" class = "Education.Profile"/>
3| <!— Definition for studentl bean —>
<bean id = "studentl" class = "Education.Student">
<property name = "name" value = "Zara" />
<property name = "age" value = "11"/>
</bean>
3| <!— Definition for student2 bean —>
<bean id = "student2" class = "Education.Student">
<property name = "name" value = "Neha" />
<property name = "age" value = "2"/>
</bean>
3| </beans>

LISTING 2.8: A Simple Spring Example (4): Beans.xml

Chapter 2. Background 17

(Listing 2.8), retrieves beans from the XML file and calls functions on the bean
objects.

e Bean configuration file: An XML file which acts as a cement that glues the
beans, i.e. the classes together. Beans.xml (Listing 2.8) defines the beans profile,
student] and student?2.

2.4 Reflection

Reflection in Java allows the developer to perform runtime actions given the de-
scriptions of the objects involved. Reflection is useful to change the behaviour of an
object at runtime. Reflective APIs can be used for object creation, method invoca-
tion and field access as discussed in Sections 2.4.1, 2.4.2 and 2.4.3. There are various
other reflective functions but the ones relevant to this thesis have been covered in
this Section.

2.4.1 Object Creation

Reflection APIs in Java provide a way to programmatically create objects of a class,
whose name is provided at runtime. Obtaining a class given its name is most typ-
ically done using a call to one of the static functions Class.forName(String, ...) and
passing the class name as the first parameter. Creating an object with an empty con-
structor is achieved through a call to newlInstance(args) on the appropriate java.lang.Class
object, which provides a runtime representation of a class. Both these methods are
described below:

class Example

{
}

class Test

{

void message () {System.out.println ("Hello Java");}

public static void main(String args[])
{
try {
Class ¢ = Class.forName ("Example");
Example new_example = (Example) new_example.newlnstance () ;
e.message () ;

} catch (Exception e) {System.out. println(e);}

2.4.2 Method Invocation

Methods are obtained from a Class object by supplying the method signature or by
iterating through the array of methods returned by one of Class functions. Methods
are subsequently invoked by calling method.invoke(. ..) as follows:

1| public class Demo

2[4

4

public static void main(String[] args)
throws IllegalAccessException, IllegalArgumentException,
InvocationTargetException

Chapter 2. Background 18

Method [] methods = Student. class.getMethods () ;
Student sampleObject = new Student();
methods[1].invoke (sampleObject, "data");

System. out. println (methods[0].invoke (sampleObject));

}

class Student
{
private String name;

public String getName() {return name;}

public void setName(String name) {this.name = name;}

2.4.3 Accessing Fields

Fields of Java runtime objects can be read and written at runtime. Calls to Field.get(...)
and Field.set(...) can be used to get and set fields containing objects[14] as follows:

public class Test
{

public static void main(String[] args)
throws Exception

{
Employee emp = new Employee () ;
Field field = Employee. class.getField ("uniqueNo");
field.set(emp, (short)1213);

}

// Sample class

3| class Employee

{
// Static values
public static short uniqueNo = 239;
public static double salary = 121324.13333;

244 Applications of Reflection

Reflection is widely used at the backend of many softwares. Some real applications
of Reflection are discussed below:

e Code analyzer tools: Code analyzers tools perform a static analysis of syntax,
show optimization tips and even report error conditions. They are written in a
way such that they can analyze any class file passed to them to analyze. They
use reflection to perform this analysis.

e Eclipse (Other IDEs): One example of usage of reflection is Eclipse or any
other IDE. Eclipse is able to provide us method suggestions whenever we hit
CTRL+SPACE, even before we can finish writing that class. This is achieved
through Reflection.

Chapter 2. Background 19

e Marshalling and unmarshalling: JAXB/Jattison and other marshalling/un-
marshaling libraries heavily use reflection for XML (or JSON) to/from java
beans code. They look up all annotated attributes in java bean, analyze their
overall attributes and generate XML tags for them. The same is valid for un-
marshaling as well.

¢ Junit Testcases: In previous versions of Junit, to run a testcase we had to name
a method starting with test e.g. testMethodl1(), testCode2() etc. Junit processor
used reflection to iterate over all methods in class in order to find out methods
starting with test and run this as testcase.

2.4.5 Reflection in Static Analysis

Obtaining a "whole program” yields many challenges when analyzing Java pro-
grams that use reflection, or load classes using custom class loaders. Industrial
Java applications frequently use custom class loaders or generate classes on the fly.
A static analysis may have no access to these class loaders. The same programs
also frequently use reflection to invoke methods or instantiate objects of types that
programmers cannot fully determine at compile time. To construct a complete call
graph, a static analysis needs to be aware of these calls. Even if a static analysis
is aware of reflective calls and has access to all classes that are loaded at runtime,
researchers need to modify the analysis to handle the reflective calls and all the pro-
gram'’s classes correctly[4].

When a Java program accesses a class by supplying a class name as a parameter
in Class.forName(...) library call, the static analysis needs to either conservatively
over-approximate (e.g., assume that any class can be accessed), or to perform a string
analysis that will allow it to infer the contents of the forName string argument. The
conservative over-approximation may never become constrained enough by further
instructions to be feasible in practice. On the other hand, precise string analysis is
impractical when it comes to programs of realistic size, thereby reducing scalability
to a large extent[17].

Due to this reason, many projects that use static analysis for optimization, error
detection and other purposes ignore the use of reflection. This makes the infor-
mation computed by static analysis tools incomplete[15] because some parts of the
program may not be included in the call graph and potentially unsound, because
some operations, such as reflectively invoking a method or setting an object field,
are ignored[14]. One such example is SPARK. Tools like TamiFlex were designed
with the purpose of dealing with reflection in applications.

2.5 Summary

Call graphs are abstractions extremely crucial to any interprocedural analysis. In this
chapter, we discussed some call graph construction algorithms and then introduced
Spring framework. Towards the end of this chapter, we elaborated on the concept of
reflection which would help us in understanding the forthcoming chapters.

20

3 Illustrating Unsoundness in Call
Graph Construction

This chapter illustrates unsoundness in call graph construction algorithms for Spring
programs using two examples. A call graph construction algorithm is said to be
sound if the resultant call graph does not miss any caller-callee relationship for the
application code.

3.1 A Simple Spring Application

We consider a simple Spring application illustrated in sub section 2.3.4 (Listings 2.8,
2.5 and 2.6). It is simple because it takes input beans profile, student1 and student2
from the Bean configuration file and does not make use of any new features like
annotations. We construct call graphs for this application using CHA (Section 2.2.1),
RTA (Section 2.2.2), VTA (Section 2.2.3) and SPARK (Section 2.2.4). The total number
of edges in the call graph is 84,522 in algorithms like CHA, RTA and VTA. Some of
the edges from the constructed call graph relevant to the input (edges corresponding
to the source code and not library) are shown in Figure 3.1.

The call graph constructed by CHA, RTA and VTA is not an underapproximation
in that it doesn’t miss any caller-callee relationship for the application code. On the
other hand, it is found to be an overapproximation ! since it includes spurious caller-
callee relationships.

1Overapproximation not depicted in Figure 3.1.

Chapter 3. Illustrating Unsoundness in Call Graph Construction 21

main

Profile.printName ClassPathXmlApplicationContext Profile.printAge

Student.getName clinit init prntln append toString Student.getAge

FIGURE 3.1: CHA/RTA/VTA Call Graph

main

ClassPathXmlApplicationContext

FIGURE 3.2: SPARK Call Graph

Usage of SPARK for constructing call graph for the example leads to a signifi-
cantly smaller call graph (Total number of edges in the call graph: 40,646). Some of
the edges from the constructed call graph relevant to the input (edges corresponding
to the source code and not library) are shown in Figure 3.2.

The call graph constructed by SPARK is an underapproximation for the applica-
tion code because it misses most edges related to the class Profile, Student. SPARK
does not recognise profile and student1 as beans and hence no methods are called. On
debugging the Spring implementation, we found many reflective calls. Figure 3.3
shows the return statement that calls a reflective method newlnstance(args) when in-
stantiating a bean. So, every call to the method getBean(...) calls some reflective
calls within the Spring framework which SPARK cannot resolve. SPARK is unable
to establish the link between the class (defined in the java file) and the bean (defined
in the XML file) due to its inability to handle this reflective method call. Section 2.4
provides more information about newlnstance(args) and other reflective calls.

Chapter 3. Illustrating Unsoundness in Call Graph Construction

22

FIGURE 3.3: Reflective Calls in Spring

N

Chapter 3. Illustrating Unsoundness in Call Graph Construction 23

3.2 Spring Application with Core Annotations

Listings 3.1, 3.2 and 3.3 show an example application written in Spring using core
annotations.

<?xml version = "1.0" encoding = "UTF-8"?>

<beans xmlns = "http://www.springframework.org/schema/beans"
xmlns: xsi = "http://www.w3.org/2001/XMLSchema—instance "
xmlns: context = "http://www.springframework.org/schema/context"
xsi:schemaLocation = "http://www.springframework.org/schema/beans
http:/ /www.springframework . org/schema/beans/spring—beans —3.0.xsd
http:/ /www.springframework.org/schema/context
http:/ /www.springframework . org/schema/context/spring—context —3.0.xsd ">

<context:component—scan base—package="Vehicle"/>

<context:annotation—config/>
</beans>

LISTING 3.1: Spring Application with Core Annotations (1):
Bean.xml

@Component("engine")
public class Engine

{
@Autowired

Engine Engine ()
{

}

void print ()

{

}

return new Engine();

System.out. println ("In print();"");

LISTING 3.2: Spring Application with Core Annotations (2):
Engine.java

public class App
{

public static void main(String[] args)

{

ApplicationContext context = new ClassPathXmlApplicationContext ("

file : /home/mugdha/eclipse —workspace/SpringProject/src/Bean.xml") ;

Engine e = (Engine) context.getBean(Engine.class);

e.print();

LISTING 3.3: Spring Application with Core Annotations (3): App.java

Chapter 3. Illustrating Unsoundness in Call Graph Construction 24

main

getBean(...) ClassPathXmlApplicationContext Engine.print()

FIGURE 3.4: CHA/RTA/VTA Call Graph

main

getBean(...) ClassPathxmlApplicationContext

FIGURE 3.5: SPARK Call Graph

This example uses the @Autowired annotation on a constructor to initiate the bean
we need (Listing 3.2). The constructor Engine() is annotated with @Autowired and it
instantiates the bean engine (Line 9 in Listing 3.2). An important observation is that
there is no separate definition of the bean "engine" in the XML file (Listing 3.1). More
information and examples of annotations can be found in Section 2.3.3.

For the given example, in algorithms like CHA, RTA and VTA, the total number
of edges in the call graph is 52,553. Some of the edges from the constructed call
graph relevant to the input (edges corresponding to the source code and not library)
are shown in Figure 3.4.

Call graph constructed by the algorithms CHA, RTA and VTA is an underap-
proximation. The call graph misses edges to the method annotated with core anno-
tations (Engine() in this example).

Usage of SPARK for constructing call graph for the example leads to a signifi-
cantly smaller call graph (Total number of edges in the call graph: 20,537). Some of
the edges from the constructed call graph relevant to the input (edges corresponding
to the source code and not library) are shown in Figure 3.5.

Call graph constructed by SPARK is an underapproximation because it misses
edges to the method annotated with core annotations (Engine() in this example). It
also misses the call to print() due to its inability to detect the Engine bean. This is
found to be true for Spring core annotations apart from @Autowired (namely @Bean,
@Qualifier, @Required, @Value, @Primary).

On debugging the Spring implementation, we observed that the classes handling
annotations (AutowiredBeanPostProcessor, QualifierBeanPostProcessor etc.) are respon-
sible for invoking the annotated methods. These classes contain reflective method
invocation calls which are completely ignored by these call graph construction al-
gorithms. Figure 3.6 shows a reflective call to method.invoke(...). More information
about method.invoke(...) and other reflective calls can be found in Section 2.4.

Chapter 3. Illustrating Unsoundness in Call Graph Construction 25

or.class i AutowiredAnnotationBeanPostPre

FIGURE 3.6: Reflective Calls in Annotation Handler

3.3 Summary

The examples show that the existing algorithms CHA, RTA, VTA and SPARK are not
sound for the application call graph of Spring applications due to their inability to
handle reflective calls. Reflective calls are used inside the Spring framework for the
Spring bean implementation as well as Spring annotation implementation. Spring
beans are the backbone of any Spring application and SPARK is unable to construct
a call graph that takes into account beans instantiated in the program (both using
XML file or using annotations).

26

4 Our Solution

This chapter discusses some concepts to handle reflective calls and proposes our
final solution.

Partial Call Graph construction involves constructing a call graph that explicitly
represents the call relations between the application and summarizes the library by
a single node in the graph. It is described in detail in Section 5.1.3. We can use this
concept and the -no-bodies-for-excluded option can be used to ensure that Soot never
loads the bodies of the excluded classes. In that case, SPARK ignores it. Here, the
excluded classes could be all the classes from the package org.springframework. The
Spring application uses calls like getBean(. ..) which return information from Spring
to our application. These are the call back edges from the library i.e. call graph
edges anchored at a variable from within the library that call a method within the
application. Since Soot has no information about call sites in the library, these edges
may just be depicted as edges from library to the application. These may not give us
enough information about the call getBean(...). Also, the output call graph would
be small in size (because it will not have edges within library) but the approach
would be unsound. Due to these reasons, we decided that this would not be the best
approach.

Some tools handle reflection in an input program. One such tool is TamiFlex,
which is used for taming reflection. It is described in detail in Section 5.2.2. In this
thesis, we explore handling reflection by converting reflective calls in the input code
into non-reflective calls by making suitable changes in the code.

We now discusses our solution that can be used to deal with reflective calls in
a Spring application without making any changes to the underlying call graph con-
struction algorithm used. We will use the example in Listings 4.1 and 4.2 to illustrate
our solution.

4.1 The Key Idea

We observed that when Spring IoC container loads, it initializes all beans by default.
It does not wait for an explicit getBean(...) call in the main function of any applica-
tion (eg. getBean(...) call in Listing 4.2). The bean data can be extracted from the
initialized IoC container. The idea is to stop the execution of the program once the
container loads. Information from this container can be used to replace calls and
generate a Java program that does not use reflection. This generated Java program
will serve as an input to a call graph construction algorithm. This combines dynamic
and static analysis and hence can be categorised as hybrid analysis.

This idea is illustrated in Figure 4.1. The input is a program P (Listing 4.2) and
a specification (a list of functions whose presence is to be checked in the call graph).
We execute P until the Spring IoC container loads and initializes all beans. The out-
put of this dynamic analysis is a Bean Dependence Graph (Section 4.2) which we use
along with program P as an input to our transformer.

Chapter 4. Our Solution

27

RESULT «———

BeanDependence
Program Partial execution of Graph (BDG)
p —_—
Dynamic analysis
Static
analysis

Transformer

l Program P’

Call graph
construction
algorithm

|

¥

Checking for <«+— Qutput call graph

soundness

-« Specification

FIGURE 4.1: Our Solution: Extracting Bean Data from Spring Con-

tainer

Our transformer converts program P into a program P”. P” is a simple program
statically equivalent to P but which does not use reflection. This program is fed to
any call graph construction algorithm. The output call graph is compared with the
specification provided. If the functions in the specification are present in the call
graph, the call graph construction is sound. Otherwise we conclude it is unsound.
We are further exploring if model checking techniques can be used for this sound-

ness check.

For example, Listing 4.2 shows an example program. Our proposed approach
would follow the following steps on the original program:

1. Execute the program till the IoC container loads and initializes all beans (Line

10 in Listing 4.2).

2. Extract the bean Car.

3. Replace the getBean(...) call '(Line 11 in Listing 4.2) by a constructor of class

Car (Line 10 in Listing 4.3).

4. Call the annotated methods engine() and setEngine(...) (Lines 12 and 13 in

Listing 4.3).

5. Give the resulting Java program (shown in Listing 4.3) as input to CG construc-

tor.

IWe focus on getBean(...) calls in this algorithm. A call to getBean(...) instantiates beans and this
is the first step in fetching beans in any Spring application. There may be other functions which need
replacing, we have not considered them in this algorithm

Chapter 4. Our Solution

28

N

@Component

public class Car

{
private Engine engine;
@Autowired
public void setEngine (Engine engine)

{

}
@Bean
Engine engine ()

{

}
void print() {...}

this.engine = engine;

return new Engine();

}

7| public class Engine

{. ..

w N

w N

LISTING 4.1: Our Solution(1): Classes of the input program

public class App
{

public static void main(String[] args)

{

ApplicationContext context = new ClassPathXmlApplicationContext ("
file :Bean.xml") ;

Car c¢ = (Car) context.getBean(Car.class);

c.print();

LISTING 4.2: Our Solution(2): Original Program P

public class App
{
public static void main(String[] args)
{
Car ¢ = new Car();
Engine e = new Engine();
e = c.engine();
c.setEngine(e);
c.print();

LISTING 4.3: Our Solution(3): Updated Program P”

Chapter 4. Our Solution 29

FIGURE 4.2: Bean Dependence Graph

4.2 Bean Dependence Graph

We introduce a new data structure, BeanDependenceGraph (BDG) which is used
extract bean data.

Definition 4.2.1. Bean Dependence Graph is a directed acyclic graph G = (V, E) where
every vertex is a pair of a bean and a list of abstract objects (objects of the bean class and its
subclasses). We use node@b for the vertex (b, listOfAbstractObjects) € V.
YV u, v e Vwhere u = (u_b, u_listOfObjects) and v = (v_b, v_listOfObjects),

(u, v) € E iff bean v_b is autowired in bean u_b.
Every bean b in BDG points to a list of beans which are autowired as fields of class b.

For the example in Listing 4.1, the BDG created is illustrated in the Figure 4.2.
Since the class Car has an @Autowired method setEngine(...) (Line 6 in Listing 4.1), it
autowires the bean Engine. Hence Car would have an outgoing edge to Engine. For
our proposed algorithm, we assume that the Bean Dependence Graph extracted is
acyclic.

In some cases (discussed in Section 4.3.1), Spring constructs a dependence graph
which can be refined to be used as a BDG. The dependence graph created by Spring
consists of beans as nodes. The autowired relationship between beans is captured
in the form of the egdes. An obvious refinement to this dependence graph is to add
a list of objects per node. In some other cases, we may have to construct the whole
graph explicitly.

4.3 Handling Different Containers and Scopes

Spring framework consists of different IoC containers and beans have different scopes.
Our algorithm has to handle all such possible containers and scopes.

4.3.1 Spring IoC containers

Spring framework has four IoC containers. They all have different ways of initial-
izing beans from the inputs (XML file and/or annotations). They are categorized as
follows:

e XmlBeanFactory: XmlBeanFactory considers input only from the XML file.
Annotations are ignored and Spring does not store any specific information
which will help construct a BDG.

Chapter 4. Our Solution 30

public class App

{
public static void main(String[] args) {

ApplicationContext context = new ClassPathXmlApplicationContext

(....);

Car ¢ = (Car) context.getBean("car");
c.print();
Car cc = (Car) context.getBean("car");
cc.print();

LISTING 4.4: Original Program

¢ AnnotationConfigApplicationContext: This container looks at Java classes as
input but it looks at bean definitions only in those classes. It ignores all an-
notations except @Component and @Bean. Spring ignores @Bean annotations
but creates a dependency graph. We can update the dependency graph (if re-
quired) to construct a BDG for this container.

e ClassPathXmlApplicationContext and FileSystemXmlApplicationContext: These
containers consider both XML file and Java classes as input. Spring constructs
a dependency graph. For building this graph, these containers consider func-
tions with @Autowired annotation but not @Bean annotation. We can update
the dependency graph (if required) to construct a BDG for this container.

All these containers need to be handled separately due to the different inputs they
consider. In this algorithm, we will focus on ClassPathXmlApplicationContext and
FileSystemXmlApplicationContext since they are the most generic containers ie. con-
sider both XML file and Java classes as inputs.

4.3.2 Bean Scopes

As mentioned in Section 2.3.3, Spring beans have different scopes. These scopes can
be specified either in the XML file or in annotations. The basic scopes are singleton
and prototype. The default scope is singleton and it scopes the bean definition to a
single instance per Spring container. If the scope is prototype, the Spring container
creates a new bean instance of the object every time a request for that specific bean
is made.

Listing 4.4 shows the input program where we have multiple getBean(...) calls
(Lines 5 and 7) for the same class Car.

If the scope of the bean Car is singleton, cc = c. If the scope is prototype, Spring
creates a new instance for every getBean(...) call. Hence cc != c. This shows the
importance of considering scopes when processing getBean(...) calls.

Since we execute the program till the container is initialized, all the bean infor-
mation (including scoping of beans) will be captured in the container. For every
getBean(...) call, the algorithm will check its bean scope and transform the input
program accordingly. Listing 4.5 shows the output program our algorithm gener-
ates if the scope of the bean Car is singleton. Listing 4.6 shows the output generated
if the scope is prototype.

Chapter 4. Our Solution

31

public class App
{
public static void main(String[] args) {

Car ¢ = new Car();

Engine e = new Engine();

e = c.engine();

c.setEngine (e);

c.print();

Car cc = c;

cc.print();

LISTING 4.5: Output Program: Singleton Scope

public class App
{
public static void main(String[] args) {

Car ¢ = new Car();

Engine e = new Engine();

e = c.engine();

c.setEngine (e);

c.print();

Car cc = new Car();

Engine e2 = new Engine();

e2 = cc.engine();

cc.setEngine(e2);

cc.print();

LISTING 4.6: Output Program: Prototype Scope

Chapter 4. Our Solution 32

4.4 Algorithm

For every getBean(...) call in the input program P, we create a BDG rooted at the bean
created. This BDG is passed as an input to the algorithm 1. Algorithm 1 traverses
the BDG in postorder and calls annotated functions on the objects created. These ob-
jects are stored in every node of a BDG. It does not construct any objects or call any
functions on the root. It just returns the root of the BDG to the main algorithm (Al-
gorithm 2). The main algorithm transforms the input program P to a non-reflective
output program P’ using the bean information retrieved from the BDG.

Algorithm 1 Traverse the BDG in postorder and call annotated functions

1: procedure POPULATEBEANS(BDG):

2 for (node n € BDG) do

3: Instantiate object obj for all children(n)

4: Call all methods annotated by @Autowired on obj
5

6

7

if (n is not the root) then
Instantiate object obj for n

Call all methods annotated by @Autowired on obj
return root(BDG)

Algorithm 2 Transform Code Using Bean Information
Input: Program P, BDG
Output: Program P’

1: procedure MAIN?:

2 Execute input program P till initialization of container

3 for every getBean call C in input program P do

4 b = bean returned by C

5: root = populateBeans(BDG)

6 Update the output program:

7 Instantiate object obj for root

8 Call all methods annotated by @Autowired on obj
9 Call all direct methods of class(root) on obj

This approach considers both XML file and annotations as input. It extracts infor-
mation from Spring container and reduces redundant programming. This approach
is sound and the resulting call graph is precise. It is a combination of dynamic as
well as static analysis, and can be categorised as hybrid analysis.

Chapter 4. Our Solution

33

N

@Component
public class Engine
{
@Autowired
Wheel w;
@Autowired
Fuel f;
@Autowired
public void setWheel (Wheel wl)
{
this.w = wl;
}
@Autowired
public void setFuel(Fuel f1)
{
this.f = f1;
}
public void func() {...}
}
@Component

public class Wheel

{.

.

3| @Component

public class Fuel

| 1.

.

LISTING 4.7: Example(1): Classes of the input program

public class App

{

public static void main(String[] args)

{

n

ApplicationContext context = new ClassPathXmlApplicationContext(
file : Bean.xml");

Engine e = (Engine) context.getBean("engine");

e.func();

LISTING 4.8: Example(2): Original Program P

Chapter 4. Our Solution

34

public class App

W N

N U

{
public static void main(String[] args)
{
Fuel f = new Fuel();
Wheel w = new Wheel () ;
}

LISTING 4.9: Intermediate Program P’

4.5 An Example

Bean List of objects
Engine
Bean List of objects Bean List of objects
Fuel Wheel

FIGURE 4.3: Bean Dependence Graph (BDG)

Listings 4.7 and 4.8 illustrate the input program and Figure 4.3 shows the BDG cre-
ated for it. The leaf nodes in the BDG would be Fuel and Wheel since they do not
have @Autowired fields. The bean Engine is the parent of Fuel and Wheel.

Algorithm 1 populates the BDG with the suitable objects of classes Fuel and
Wheel. Furthermore, the algorithm updates the output program with the suitable
@Autowired functions belonging to bean classes of all nodes except the root (in this
case, none). The root is handled in algorithm 2. This is because we need to call more
functions on the root (in this case, Engine). The output program and BDG are shown
in Listing 4.9 and Figure 4.4 respectively.

Bean List of objects
Engine f w
Bean List of objects Bean List of objects
Fuel f Wheel w

FIGURE 4.4: Intermediate BDG

Algorithm 2 transforms code using the bean information extracted from the BDG.
For every getBean(...) call in the input program P, this algorithm populates the BDG
using algorithm 1. It further updates the input program with object created and all

Chapter 4. Our Solution 35

2| {

public class App

public static void main(String[] args)
{

Fuel f = new Fuel();

Wheel w = new Wheel () ;

Engine e = new Engine();

e.setWheel (w) ;

e.setFuel(f);

e.func();

}

LISTING 4.10: Output Program P”

functions (annotated and non annotated) called on the root of the BDG (in this case,
(setWheel(...), setFuel(...) and func()). The output program is shown in Listing 4.10.

4.6 Limitations

The algorithm depicted in Section 4.4 deals with the Spring API method getBean(. ..)
and some core annotations (@Bean, @ Autowired, @Qualifier, @ Component, @Configura-
tion, @Scope). At the moment, our prototype proposal does not handle the following:

e Other annotations and reflective calls.
e MVC framework in Spring.
e Applications with a cyclic bean dependency.

As of now, our prototype proposal has no thorough practical implementation and
hence we have been unable to evaluate it on real-world examples.

4.7 Summary

This chapter discussed some approaches that we could use to deal with the un-
soundness in call graph construction algorithms. The unsoundness is majorly due
to reflective calls. All approaches in this chapter gave ideas to handle reflection.

36

5 Related Work

Static analysis of the Reflection API has attracted significant research effort. Until
2005, the analysis of code which uses reflection was considered to be out of bounds
for static analysis. In 2005, Livshits et al.[14] published an analysis of how reflection
was used in six Java projects, proposing three unsound assumptions and using these
to (partially) statically resolve the targets of dynamic method calls (Section 5.1.2).
Since then more tools were based on similar assumptions. Soot[26] and WALA[27]
are well known frameworks for performing static analysis. In 2017, Landman et
al.[10] surveyed what static analysis approaches existed for Java and what their lim-
itations were. They also analyzed how real-world Java code uses the Reflection API,
and how many Java projects contain code challenging state-of-the-art static analysis.
In their corpus, reflection can not be ignored for 78% of the projects. This shows how
important it has become to handle reflection soundly in static analyses.

In this chapter, we discuss some more approaches the Program Analysis com-
munity has proposed from 2005.

5.1 General Call Graph Construction

This Section discusses some explored call graph construction methods and reflects
on how they differ from our approach.

5.1.1 Precise Analysis of String Expressions

In 2003, Christensen et al.[7] presented a static analysis technique for extracting a
context-free grammar from a program and applying a variant of the Mohri-Nederhof
approximation algorithm to approximate the possible values of string expressions in
Java programs. They used the Soot framework[26] to parse class files and compute
interprocedural control flow graphs. Their algorithm for string analysis can be split
into a front-end that translates the given Java program into a flow graph, and a back-
end that analyzes the flow graph and generates finite-state automata.

This technique resolves reflective calls with an approximation of string expres-
sions, as opposed to our proposed algorithm, which uses dynamic information to
convert reflective calls into semantically equivalent non reflective calls.

5.1.2 Call Graph Discovery using Points-to Analysis

This technique, proposed in 2005 by Livshits et al.[14] uses sound points-to analysis
to determine all the possible sources of strings that are used as class names. It is one
of the first techniques that attempted to resolve a reflective call for the purpose of
static analysis. The pointer analysis-based approach fully resolves the targets of a
reflective call if constant strings account for all the possible sources. The program
points where input strings are defined are called specification points.

Chapter 5. Related Work 37

ApplicationCall

GraphEdge _
LibraryCall
OO0 .. GraphEdge
@) -
APPLICATION | L LIBRARY
LibraryCall
BackEdge

FIGURE 5.1: Partial Call Graph

Unfortunately the number of specification points in a program can be large. In-
stead of asking users to specify the values of every possible input string, this ap-
proach takes advantage of casts, whenever available, to determine a conservative
approximation of targets of reflective calls that are not fully resolved. The input
program can be represented as a set of relations in bddbddb, a BDD-based program
database. The program database and the constraint resolution tool allows program
analyses to be expressed in a succinct way as a set of rules in Datalog, a logic pro-
gramming language. Points-to information is compactly represented in bddbddb
with binary decision diagrams (BDDs) and can be accessed and manipulated ef-
ficiently with Datalog queries. Finally, user-provided specification is used for the
remaining set of calls (calls whose source strings are not all constants) in order to
obtain a conservative approximation of the call graph.

Points-to analysis determines all possible sources of strings, which can further
resolve the targets of reflective calls. Our proposed algorithm does not determine
sources of strings at all, we just use dynamic information to transform the given
program into a simpler program with non reflective calls.

5.1.3 Averroes

Whole program call graph construction is challenging for a program. Even if the
call graph construction algorithm itself is efficient, just reading all of the library de-
pendencies of a program takes a long time. Additionally, in many cases, the whole
program may not even be available for analysis. This generated interest in the de-
velopment of algorithms that analyze only parts of a program.

A partial call graph is a call graph that explicitly represents the call relations
between the analyzed parts of the program, usually the application, and summarizes
the unanalyzed parts of the program, usually the library, by a single node in the
graph. For partial call graph construction, library is modelled as a single summary
node. A call edge is created for each possible call between application methods, but
no edges are created to represent calls within the library. All methods in the library
are assumed to be reachable from any other method in the library[1].

Figure 5.1 illustrates the types of call graph edges. The call graph edges can be
categorized as:

e Application Call Graph Edges: Model the calls within application methods

Chapter 5. Related Work 38

e Library Call Graph Edges: Represent the calls into the library
e Library Call Back Edges: Define the calls out of the library

A realistic yet very useful assumption is that the code of the library has been
compiled without access to the code of the application. This is referred to as the
Separate Compilation Assumption[1]. Ignoring the library call back edges may render
the generated call graph unsound. Thus, it is crucial to precisely define, based on
the separate compilation assumption, how the library summary node interacts with
the application methods in the call graph.

In 2012, Karim et al.[2] proposed Averroes, a tool that intends to provide the
same input environment to the whole-program analysis, but without analyzing any
actual code of the original library classes. For each application class, Averroes exam-
ines only the constant pool to find all references to library classes, fields, functions.
Averroes uses this information to build a model of the class hierarchy and the over-
riding relationships between methods in the program. Since Averroes examines only
a small fraction of the library, its execution can be much faster than a typical whole-
program analysis.

The output of Averroes is a placeholder library. Averroes uses Soot to gener-
ate this library. The application classes together with the generated placeholder li-
brary make up a self-contained whole program that can be given as input to any
whole-program analysis[2]. Averroes models reflective behaviour in the library in
two ways. First, whenever a call site in the application calls a library method, Aver-
roes assumes that any argument of the call that is a string constant could be the
name of an application class that the library instantiates by reflection. For every
such string constant that is the name of an application class, Averroes generates a
new instruction and a call to the default constructor of the class. Second, Averroes
reads information about uses of reflection in the format of TamiFlex (Section 5.2.2).

Averroes tranforms a given input environment into a simpler environment i.e.
a placeholder library. This largely differs from our proposed algorithm, where we
transform an input program into a simpler program, keeping the enviroment (li-
brary, Spring API) the same.

5.1.4 Call Graph Construction for Java Libraries

Constructing call graphs for Java libraries is challenging. Libraries can be extended
by their users via inheritance. Libraries also consist of classes and interfaces that
define the public API and those which belong to the library private implementation.
Ignoring the first property leads to the construction of call graphs that miss impor-
tant edges (unsoundness), while ignoring the second property leads to call graphs
with many spurious edges (imprecision). In the first scenario, the library is assumed
to be open, i.e., all non-private classes, fields, and methods can be accessed; non-
final classes can be extended and non-final methods can be overridden. We use the
term open-package assumption (OPA) to refer to this assumption. Call graphs built
based on OPA represent the unrestricted usage scenarios of the library. In the second
scenario, only the code that belongs to a library’s public APl is used or gets extended
by users of it. In Java, e.g., a library’s classes, fields and methods with package vis-
ibility do not belong to the public API. We refer to this case as the closed-package
assumption (CPA).

It is not possible to adequately address both scenarios by using the same call-
graph algorithm. If we did, the algorithm would be either unsound or imprecise
depending on the scenario in which it is used. Thus this led to two different call

Chapter 5. Related Work 39

graph algorithms for libraries, both modelled on CHA. The first algorithm is sound
but makes very conservative assumptions. The second algorithm gives soundness
at the cost of precision[16]. This was studied in 2016.

Our proposed algorithm does not differ between library scenarios (OPA, CPA).
Instead our algorithm uses dynamic information to rewrite any input program and
passes the rewritten program as an input to any call graph construction algorithm.

5.2 Reflection and Framework Handling for Call Graph Con-
struction

This Section talks about reflection and framework handling for call graph construc-
tion.

5.2.1 DOOP Framework

DOOP Framework for points-to analysis of Java programs was proposed by Smarag-
dakis et al.[5] in 2009. DOOP makes use of Datalog language for specifying the pro-
gram analyses. Datalog, being a declarative language separates the specification of
an analysis from its implementation. This allows multiple techniques for efficient
execution, all expressed at the level of Datalog evaluation.

In order to execute Datalog programs efficiently, the low-level representation of
relations should be compact and an indexing scheme should be in place so that all
rules are executed efficiently. A commercial Datalog engine developed by LogicBlox
Inc. is used which allows the user to specify maximum cardinalities for the domains
of variables. The relations are indexed by very routine data structure, B-trees.

DOOP supports both context-sensitive as well as context-insensitive pointer anal-
ysis. Call graph construction is also specified in Datalog. The interdependency be-
tween call graph construction (i.e., which methods are reachable in a given context)
and points-to analysis is expressed as plain Datalog mutual recursion. This allows
call graph discovery to be on-the-fly. DOOP performs sophisticated reflection analy-
sis. For example, DOOP uses distinct representations of instances of java.lang.Class
for every class in the analyzed program. This resolves some reflection automatically.

DOOP Framework uses Datalog to specify program analyses. Call graph con-
struction is also specified in Datalog. Our proposed algorithm does not use any
declarative language to specify analyses. We do not modify any analyses, but we
modify the input program into a simpler program that may generate a sounder call
graph.

5.2.2 Tamiflex

In 2011, Bodden et al.[4] proposed TamiFlex, a dynamic tool for taming reflection.
Virtually call graph construction is a whole-program analysis; the analysis must con-
sider the entire program to deliver sound results. Presence of reflective calls in pro-
grams can lead to unsound call graphs. TamiFlex aims at logging the reflective calls
into a file and estimating the targets of reflective calls. This information can then be
fed to any static analysis to get sound call graphs.

It uses two agents: Play-out agent and Play-in agent. Play-out Agent logs infor-
mation about reflective calls and dumps all classes to disk that the running program
loads or generates. In many cases, however, users may want to use static-analysis
results to transform classes, e.g., to optimize or instrument them. In these cases,

Chapter 5. Related Work 40

one faces the problem of re-packaging the transformed classes in such a way that
the original program finds the classes where it expects them. Without special tool
support, this can be either hard, for instance if the program loads the classes from a
remote location, or even impossible, if the program generates the classes on the fly.
The Play-in Agent solves this problem by re-inserting offline-transformed classes
into a running program. The agent even replaces classes that an application gener-
ates at runtime.

If the aim is only to analyze a program, users can use only the Play-out agent. The
resulting log file will give the users complete information of the reflective calls. But
simply logging reflective calls is not enough as most static-analysis tools would be
unable to interpret these logs. In many cases, users may want to use static-analysis
results to transform classes, e.g. to optimize or instrument them. Play-in agent can
be used for the same.

Tamiflex logs reflective calls into a file which is then used to transform classes
and generate a sound call graph. Tamiflex executes the complete input program
once and logs reflective calls. As opposed to this, our algorithm executes a part of
the input program to gain some dynamic information. This dynamic information is
then used to transform the input program into a simpler program with non reflective
calls.

5.2.3 Framework for Frameworks

Framework for Frameworks (F4F) is a system for effective taint analysis of framework-
based web applications developed by Sridharan et al.[23] in 2011. Static analysis of
web applications is significantly hindered by their use of frameworks. Framework
implementations often invoke application code using reflection, based on informa-
tion provided in configuration files. The idea is to define Web Application Frame-
work Language (WAFL), a simple specification language for expressing framework-
related behaviors of web applications. Automatic WAFL generators can be built for
Java web frameworks. Then these WAFL specifications are used to generate a tech-
nique to enhance taint analysis.

F4F handles Spring framework. F4F has separate handlers for all abstract imple-
mentations (all abstract Controllers), and it chooses the most suitable one for each
application controller based on its supertypes. It then uses WAFL to enhance taint
analysis. If the aim is only to do a taint analysis, F4F is a very useful tool[23]. F4F
was developed primarily for use by IBM customer engineers working with customer
code. Itis relatively integrated into AppScan products and hence has not been made
open source.

F4F can be extended if we use WAFL generation with call graph construction
algorithms. WAFL indirectly uses changes in call graphs to generate a correct sum-
mary and perform taint analysis. These call graphs may be restricted to specific
customer domains. If we talk about only these domains, it may be interesting to
observe how WAFL fares in terms of soundness and precision of call graphs.

F4F indirectly uses changes in call graphs to generate a correct summary and
perform taint analysis. F4F focuses on performing taint analysis, as opposed to our
algorithm which focuses on generating sound call graphs.

5.2.4 Self-Inferencing Reflection Resolution for Java

Despite the large literature on pointer analysis for Java, almost all the analyses re-
ported are unsound in the presence of reflection since it is either ignored or handled

Chapter 5. Related Work 41

partially. In 2014, Li et al.[13] presented a static reflection analysis, Elf which is inte-
grated into Doop (Section 5.2.1) for analyzing Java programs. Some reflection analy-
ses have suggested resolving reflective calls by tracking the flow of class/method/-
field names in the program. Elf goes beyond those analyses by taking advantage of
a self-inferencing property inherent in reflective code. Elf makes use of a key obser-
vation: many reflective calls are self-inferenceable. We can approximate their targets
reasonably accurately based on the dynamic types of the arguments of their target
calls and the downcasts (if any) on their returned values. Consider the following
code snippet:

Object[] parameters = new Object[] {this};

for (int i = 0; i < size; i++)
{
method = target.getClass () .getMethod
("_" + omd, parameterTypes);
retval = method.invoke(target, parameters);

The method name (the first argument of getMethod()) is statically unknown as part
of it is read from command line cmd. However, the target method (represented by
method) can be deduced from the second argument (parameters) of the correspond-
ing reflective-action call invoke() [12].

With respect to pointer analysis, we can divide the pointer-affecting methods in the
Javareflection APl into three categories: (1) entry methods, e.g. forName() for creating
Class objects, (2) member-introspecting methods, e.g. getDeclaredMethod() for retriev-
ing Method (Constructor), and (3) side-effect methods, e.g. newlnstance(), invoke()
that affect the pointer information in the program reflectively. Elf is the first to han-
dle all such accessor methods in reflection analysis. Elf has been evaluated against
Doop on 11 DeCapo benchmarks and two Java applications, Eclipse4 and Javac. The
results show that Elf can make a decent tradeoff among soundness, precision and
scalability while resolving usually more reflective call targets than Doop.

Elf approximates the targets of reflective calls reasonably accurately based on the
dynamic types of the arguments of their target calls and the downcasts (if any) on
their returned values. On the other hand, our algorithm does not approximate the
targets of reflective calls. We transform the input program to rid it of reflective calls
which, in turn, simplifies the call graph construction process to a large extent.

5.2.5 Sound Static Handling of Java Reflection

Full soundness can not be practically achieved. Soundness can be looked at some-
thing you improve upon. Empirical soundness is a quantification of how much of
the dynamic behavior the static analysis covers. Here we look at some techniques
proposed in 2015 to enhance empirical soundness of static analysis and statically
handling reflective calls:

Richer string flow: The parameter of a reflective call like forName() could be any
string expression. It could be a class name as well. In order to estimate what classes,
fields or methods a string expression may represent, we can use substring matching;:
all string constants in the program text are tested for prefix and suffix matching
against known class, method and field names. The strings that may refer to such
entities are handled with more precision than others during analysis.

Chapter 5. Related Work 42

Use-Based Reflection Analysis: Reflection is one of the few parts of static analy-
sis that is under-approximated rather than over-approximated. The first use-based
reflection analysis technique back-propagates information from the use-site of a re-
flective result to the original reflection call that got under-approximated. The idea
is to create a marker object o to stand for unknown objects that a method invoca-
tion M may return. This object o flows through points-to analysis. If the reciever
of any call C is this marker object o, it remembers its origin (M). Call C also marks
a second marker object o’ which flows through points-to analysis. When o’ reaches
the site of a cast, it returns the invocation M. This is referred to as inter-procedural
back-propagation. The second analysis consists of inventing objects of the appropri-
ate type at the point of a cast operation that has received the result of a reflection
call. This works as a forward propagation technique. The backward propagation
technique affects precision. Whenever a special, unknown reflective object flows to
the point of a cast, instead of informing the result of invocation M, the technique
invents a new, regular object of the right type that starts its existence at the cast site.
The “invented” object does not necessarily abstract actual run-time objects. Instead,
it exploits the fact that a points-to analysis is fundamentally a may-analysis: it is
designed to possibly yield over-approximate results, in addition to those arising in
real executions[17].

These techniques approximate the targets of reflective calls. Our algorithm does
not approximate the targets of reflective calls, but transforms the input program to
rid it of reflective calls. This transformed program is then used as input to any call
graph construction algorithm.

5.3 Summary

This chapter briefly discussed the methods tried in the past for sounder static anal-
yses in the presence of reflective calls.

43

6 Conclusion

Constructing precise call graphs is an important prerequisite to a sound and precise
static analysis. While a lot of research effort has gone into development of sound call
graph construction algorithms, the area of call graph construction for web frame-
works remains almost unexplored.

The first contribution of this thesis is the observation that unsoundness of call
graph construction algorithms for Spring framework is only due to the presence of
reflective calls. This is described in Chapter 3 and it narrows down our problem to
handling reflection in static analysis.

Another contribution of this thesis is that we present a hybrid analysis algorithm,
as discussed in Chapter 4. This algorithm generates a simple, non-reflective version
of the input Spring program written in Java. This algorithm executes the input pro-
gram till a the initialization of the Spring container. We retrieve some bean infor-
mation from this execution and use it to transform the input program to a simple
non-reflective program. This algorithm would work on programs written in web
frameworks designed on top of the Spring framework and the call graph constructed
for these programs would be sound and precise, as required.

We hope that the idea of this algorithm helps program analysers and web de-
velopers in the future to study and (hopefully) improve soundness of call graph
construction algorithms and precision of the resulting call graph.

44

List of Abbreviations

IDE Integrated Development Environment
POJO Plain Old Java Objects

POJI Plain Old Java Interfaces

API application-program interface

CHA Class Hierarchy Analysis

RTA Rapid Type Analysis

VTA Variable Type Analysis

SPARK Soot Pointer Analysis Research Kit

IoC Inversion of Control
DI Dependency Injection
IoC Inversion of Control

XML eXtensible Markup Language

MVC model-view-controller

F4F Framework for Frameworks

WAFL Web Application Framework Language
BDD Binary Decision Diagram

OPA open-package assumption

CPA closed-package assumption

WALA Watson Libraries for Analysis

45

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
34
3.5
3.6

4.1
4.2
4.3
44

51

ClassHierarchy 6
CHACallGraph o 6
RTACallGraph o o 7
VIACallGraph o 7
Pointer AssignmentGraph 0L 9
SPARKCall Graph 9
Spring Architecture Lo Lo 10
CHA/RTA/VTA CallGraph. 21
SPARKCall Graph 21
Reflective CallsinSpring 22
CHA/RTA/VTA CallGraph., 24
SPARKCall Graph 24
Reflective Calls in Annotation Handler. 25
Our Solution: Extracting Bean Data from Spring Container 27
Bean Dependence Graph 29
Bean Dependence Graph (BDG) 34
Intermediate BDG 34
PartialCallGraph 37

46

Listings

1.1
1.2
1.3
1.4
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
3.1
3.2
3.3
4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9

A Spring Application (1): Studentjava 2
A Spring Application (2): Profilejava. 2
A Spring Application (3): MainAppjava 2
A Spring Application (4): Beans.xml, 3
Call Graph Construction Example 5
SPARK: Input Program, 9
Bean Configuration File: Beans.xml 11
Example of @Autowired: Profilejava, 14
A Simple Spring Example (1): Studentjava 15
A Simple Spring Example (2): Profilejava 15
A Simple Spring Example (3): MainAppjava 16
A Simple Spring Example (4): Beansxml. 16
Spring Application with Core Annotations (1): Bean.xml 23
Spring Application with Core Annotations (2): Enginejava 23
Spring Application with Core Annotations (3): Appjava 23
Our Solution(1): Classes of the input program 28
Our Solution(2): Original ProgramP 28
Our Solution(3): Updated ProgramP” 28
Original Program 30
Output Program: Singleton Scope 31
Output Program: Prototype Scope 31
Example(1): Classes of the input program 33
Example(2): Original ProgramP 33
Intermediate ProgramP" o o Lo 34

410 OutputProgram P” o o 35

List of Tables

2.1 Pointer Assignment Graph Construction

47

48

Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Karim Ali and Ondfej Lhotak. “Application-Only Call Graph Construction”.
In: Proceedings of the 26th European Conference on Object-Oriented Programming.
ECOQOP’12. Beijing, China: Springer-Verlag, 2012, pp. 688-712. ISBN: 978-3-642-
31056-0. DOI: 10.1007/978-3-642-31057-7_30. URL: http://dx.doi.org/10.
1007/978-3-642-31057-7_30.

Karim Ali and Ondfej Lhotak. “Averroes: Whole-program Analysis Without
the Whole Program”. In: Proceedings of the 27th European Conference on Object-
Oriented Programming. ECOOP’13. Montpellier, France: Springer-Verlag, 2013,
pp- 378-400. 1SBN: 978-3-642-39037-1. DOI: 10.1007/978-3-642-39038-8_16.
URL: http://dx.doi.org/10.1007/978-3-642-39038-8_16

Lars Ole Andersen. “Program analysis and specialization for the C program-
ming language”. PhD thesis. University of Cophenhagen, 1994.

Eric Bodden et al. “Taming Reflection: Aiding Static Analysis in the Presence
of Reflection and Custom Class Loaders”. In: Proceedings of the 33rd Interna-
tional Conference on Software Engineering. ICSE "11. Waikiki, Honolulu, HI, USA:
ACM, 2011, pp. 241-250. 1SBN: 978-1-4503-0445-0. DOI: 10 . 1145 /1985793 .
1985827. URL: http://doi.acm.org/10.1145/1985793.1985827.

Martin Bravenboer and Yannis Smaragdakis. “Strictly Declarative Specifica-
tion of Sophisticated Points-to Analyses”. In: SIGPLAN Not. 44.10 (Oct. 2009),
pp- 243-262. 1SSN: 0362-1340. DOI: 10 . 1145/1639949 . 1640108. URL: https:
//doi.org/10.1145/1639949.1640108.

Call Graph Algorithms. Call Graph Algorithms. URL: https://ben-holland.
com/call-graph-construction-algorithms-explained.

Aske Simon Christensen, Anders Moller, and Michael 1. Schwartzbach. “Pre-
cise Analysis of String Expressions”. In: Proceedings of the 10th International
Conference on Static Analysis. SAS’03. San Diego, CA, USA: Springer-Verlag,
2003, pp. 1-18. 1SBN: 3540403256.

T. Eisenbarth, R. Koschke, and D. Simon. “Aiding program comprehension by
static and dynamic feature analysis”. In: Proceedings IEEE International Confer-
ence on Software Maintenance. ICSM 2001. 2001, pp. 602-611.

Debin Gao, Michael K. Reiter, and Dawn Song. “Gray-Box Extraction of Exe-
cution Graphs for Anomaly Detection”. In: Proceedings of the 11th ACM Confer-
ence on Computer and Communications Security. CCS '04. Washington DC, USA:
Association for Computing Machinery, 2004, pp. 318-329. ISBN: 1581139616.
DOI: 10.1145/1030083.1030126. URL: https://doi.org/10.1145/1030083.
1030126.

Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. “Challenges for
Static Analysis of Java Reflection: Literature Review and Empirical Study”. In:
Proceedings of the 39th International Conference on Software Engineering. ICSE "17.
Buenos Aires, Argentina: IEEE Press, 2017, pp. 507-518. 1SBN: 9781538638682.
DOI: 10.1109/ICSE.2017.53. URL: https://doi.org/10.1109/ICSE.2017.53.

https://doi.org/10.1007/978-3-642-31057-7_30
http://dx.doi.org/10.1007/978-3-642-31057-7_30
http://dx.doi.org/10.1007/978-3-642-31057-7_30
https://doi.org/10.1007/978-3-642-39038-8_16
http://dx.doi.org/10.1007/978-3-642-39038-8_16
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1985793.1985827
http://doi.acm.org/10.1145/1985793.1985827
https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1145/1639949.1640108
https://ben-holland.com/call-graph-construction-algorithms-explained
https://ben-holland.com/call-graph-construction-algorithms-explained
https://doi.org/10.1145/1030083.1030126
https://doi.org/10.1145/1030083.1030126
https://doi.org/10.1145/1030083.1030126
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1109/ICSE.2017.53

Bibliography 49

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Ondfej Lhotdk and Laurie Hendren. “Scaling Java Points-to Analysis Using
SPARK”. In: Proceedings of the 12th International Conference on Compiler Con-
struction. CC’03. Warsaw, Poland: Springer-Verlag, 2003, pp. 153-169. ISBN: 3-
540-00904-3. URL: http://dl.acm.org/citation.cfm?id=1765931.1765948.

Yue Li, Tian Tan, and Jingling Xue. “Understanding and Analyzing Java Re-
flection”. In: ACM Trans. Softw. Eng. Methodol. 28.2 (Feb. 2019). 1SSN: 1049-331X.
DOI: 10.1145/3295739. URL: https://doi.org/10.1145/3295739.

Yue Li et al. “Self-Inferencing Reflection Resolution for Java”. In: Proceedings
of the 28th European Conference on ECOOP 2014 — Object-Oriented Program-
ming - Volume 8586. Berlin, Heidelberg: Springer-Verlag, 2014, pp. 27-53. ISBN:
9783662442012. DOI: 10.1007/978-3-662-44202-9_2. URL: https://doi.
org/10.1007/978-3-662-44202-9_2

Benjamin Livshits, John Whaley, and Monica S. Lam. “Reflection Analysis
for Java”. In: Proceedings of the Third Asian Conference on Programming Lan-
guages and Systems. APLAS’05. Tsukuba, Japan: Springer-Verlag, 2005, pp. 139-
160. 1SBN: 3-540-29735-9, 978-3-540-29735-2. DOI: 10.1007/11575467 _11. URL:
http://dx.doi.org/10.1007/11575467_11.

Benjamin Livshits et al. “In Defense of Soundiness: A Manifesto”. In: Commun.
ACM 58.2 (Jan. 2015), pp. 44—46. 1SSN: 0001-0782. DOI: 10.1145/2644805. URL:
https://doi.org/10.1145/2644805.

Michael Reif et al. “Call Graph Construction for Java Libraries”. In: Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering. FSE 2016. Seattle, WA, USA: ACM, 2016, pp. 474-486. ISBN:
978-1-4503-4218-6. DOI: 10 .1145/2950290.2950312. URL: http://doi.acm.
org/10.1145/2950290.2950312.

Yannis Smaragdakis et al. “More Sound Static Handling of Java Reflection”.
In: APLAS. 2015.

Spring Annotations. Spring Annotations. URL: https : / / springframework .
guru/spring-framework-annotations.

Spring Annotations. Spring Annotations. URL: https : / / stackabuse . com/
spring-annotations-core-framework-annotations/.

Spring Architecture. Spring Architecture. URL: https://www.tutorialspoint.
com/spring/spring_architecture.htm.

Spring Project. Spring Framework. URL: https://spring.io/projects/spring-
framework.

Spring Tutorial. Spring Tutorial. URL: https : / /www . tutorialspoint . com/
spring.

Manu Sridharan et al. “F4F: Taint Analysis of Framework-based Web Ap-
plications”. In: Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications. OOPSLA "11. Port-
land, Oregon, USA: ACM, 2011, pp. 1053-1068. 1SBN: 978-1-4503-0940-0. DOTI:
10.1145/2048066 . 2048145. URL: http://doi.acm.org/10.1145/2048066 .
2048145.

http://dl.acm.org/citation.cfm?id=1765931.1765948
https://doi.org/10.1145/3295739
https://doi.org/10.1145/3295739
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1007/11575467_11
http://dx.doi.org/10.1007/11575467_11
https://doi.org/10.1145/2644805
https://doi.org/10.1145/2644805
https://doi.org/10.1145/2950290.2950312
http://doi.acm.org/10.1145/2950290.2950312
http://doi.acm.org/10.1145/2950290.2950312
https://springframework.guru/spring-framework-annotations
https://springframework.guru/spring-framework-annotations
https://stackabuse.com/spring-annotations-core-framework-annotations/
https://stackabuse.com/spring-annotations-core-framework-annotations/
https://www.tutorialspoint.com/spring/spring_architecture.htm
https://www.tutorialspoint.com/spring/spring_architecture.htm
https://spring.io/projects/spring-framework
https://spring.io/projects/spring-framework
https://www.tutorialspoint.com/spring
https://www.tutorialspoint.com/spring
https://doi.org/10.1145/2048066.2048145
http://doi.acm.org/10.1145/2048066.2048145
http://doi.acm.org/10.1145/2048066.2048145

Bibliography 50

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Bjarne Steensgaard. “Points-to Analysis in Almost Linear Time”. In: Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL "96. St. Petersburg Beach, Florida, USA: Association
for Computing Machinery, 1996, pp. 32—41. 1SBN: 0897917693. DOI: 10.1145/
237721.237727. URL: https://doi.org/10.1145/237721.237727.

Vijay Sundaresan et al. “Practical Virtual Method Call Resolution for Java”. In:
Proceedings of the 15th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications. OOPSLA “00. Minneapolis, Min-
nesota, USA: Association for Computing Machinery, 2000, pp. 264-280. ISBN:
158113200X. DOI: 10.1145/353171.353189. URL: https://doi.org/10.1145/
353171.353189

Raja Vallée-Rai et al. “Soot - a Java Bytecode Optimization Framework”. In:
Proceedings of the 1999 Conference of the Centre for Advanced Studies on Collabo-
rative Research. CASCON "99. Mississauga, Ontario, Canada: IBM Press, 1999,
p- 13.

WALA Docs. WALA Docs: Jan 2020. URL: http://wala . sourceforge . net/
javadocs/trunk/.

Wikipedia contributors. Call Graph — Wikipedia, The Free Encyclopedia. URL:
https://en.wikipedia.org/wiki/Call_graph.

Wikipedia contributors. Inversion of Control — Wikipedia, The Free Encyclopedia.
URL: https://en.wikipedia.org/wiki/Inversion_of_control.

Wikipedia contributors. Spring Framework — Wikipedia, The Free Encyclopedia.
URL: https://en.wikipedia.org/wiki/Spring_Framework.

https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/353171.353189
https://doi.org/10.1145/353171.353189
https://doi.org/10.1145/353171.353189
http://wala.sourceforge.net/javadocs/trunk/
http://wala.sourceforge.net/javadocs/trunk/
https://en.wikipedia.org/wiki/Call_graph
https://en.wikipedia.org/wiki/Inversion_of_control
https://en.wikipedia.org/wiki/Spring_Framework

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Background
	Call Graph
	Call Graph Construction Algorithms
	Class Hierarchy Analysis
	Rapid Type Analysis
	Variable Type Analysis
	SPARK

	Spring Framework
	Spring Architecture
	Inversion of Control
	Spring Annotations
	An Example

	Reflection
	Object Creation
	Method Invocation
	Accessing Fields
	Applications of Reflection
	Reflection in Static Analysis

	Summary

	Illustrating Unsoundness in Call Graph Construction
	A Simple Spring Application
	Spring Application with Core Annotations
	Summary

	Our Solution
	The Key Idea
	Bean Dependence Graph
	Handling Different Containers and Scopes
	Spring IoC containers
	Bean Scopes

	Algorithm
	An Example
	Limitations
	Summary

	Related Work
	General Call Graph Construction
	Precise Analysis of String Expressions
	Call Graph Discovery using Points-to Analysis
	Averroes
	Call Graph Construction for Java Libraries

	Reflection and Framework Handling for Call Graph Construction
	DOOP Framework
	Tamiflex
	Framework for Frameworks
	Self-Inferencing Reflection Resolution for Java
	Sound Static Handling of Java Reflection

	Summary

	Conclusion
	Bibliography

