
CALL GRAPH CONSTRUCTION FOR SPRING
FRAMEWORK

Mugdha Khedkar
Chennai Mathematical Institute, India

Supervisors:
Prof. Dr. Eric Bodden 1 Dr. Johannes Späth 2

1Universität Paderborn, 2Codeshield,
Germany Germany

May 8, 2020

Overview

1 Motivation

2 Introduction
Call Graph Construction
Spring Framework

3 Observations

4 Possible Solution

5 Our Solution

6 Conclusion

7 References

Motivation

Motivation

Call graphs give information necessary for compilers to determine
whether specific optimizations can be applied
Software engineering tools like IDEs use call graph information to help
software engineers increase their understanding of a program
Call graphs are crucial for any interprocedural static analysis
Soundness and precision of a call graph directly affects the soundness
and precision of a client analysis that uses it

3

Introduction Call Graph Construction

Call Graph

A static abstraction of all the methods that can be called by a program
An interprocedural analysis requires an approximation of the call graph

Example Program
1 public class A
2 {
3 public static void main(String args

[])
4 {
5 if(...)
6 B b = new B();
7 else
8 C c = new C();
9 }

10 ...
11 }

Call Graph

4

Introduction Call Graph Construction

Soundness and Precision

Example Program
1 public class A
2 {
3 A foo(A x) {return x;}
4 }
5 public class B extends A
6 {
7 A foo(A x) {return new C();}
8 }
9 public class C extends A

10 {
11 A foo(A x) {return new A();}
12 }
13 public class D
14 {
15 public static void main(String[]

args)
16 {
17 A x = new B();
18 A y = new A();
19 y.foo(x);
20 }
21 }

Unsound Call Grapha

aEdges have been numbered for
convenience

5

Introduction Call Graph Construction

Soundness and Precision

Example Program
1 public class A
2 {
3 A foo(A x) {return x;}
4 }
5 public class B extends A
6 {
7 A foo(A x) {return new C();}
8 }
9 public class C extends A

10 {
11 A foo(A x) {return new A();}
12 }
13 public class D
14 {
15 public static void main(String[]

args)
16 {
17 A x = new B();
18 A y = new A();
19 y.foo(x);
20 }
21 }

Imprecise Call Grapha

aEdges have been numbered for
convenience

6

Introduction Call Graph Construction

Soundness and Precision

Example Program
1 public class A
2 {
3 A foo(A x) {return x;}
4 }
5 public class B extends A
6 {
7 A foo(A x) {return new C();}
8 }
9 public class C extends A

10 {
11 A foo(A x) {return new A();}
12 }
13 public class D
14 {
15 public static void main(String[]

args)
16 {
17 A x = new B();
18 A y = new A();
19 y.foo(x);
20 }
21 }

Sound and Precise Call Grapha

aEdges have been numbered for
convenience

7

Introduction Call Graph Construction

Call Graph Construction

Call graphs can be constructed in advance or on-the-fly
In C, the problem is difficult because of function pointers
In C++, we additionally have virtual functions
In Java and web frameworks like Spring, we have reflection and all calls
are virtual by default (unlike C++)

8

Introduction Call Graph Construction

Existing Algorithms: CHA

Simplest flow-insensitive algorithm
Looks at class hierarchy:

In Java, if a reference variable r has a type A, the possible classes of
run-time objects are included in the subtree of A
Denoted by cone(A)

Finds out what methods may be called at a virtual call site
Assumes that entire inheritance hierarchy is available
Example follows

9

Introduction Call Graph Construction

Example: CHA Call Graph (1)

1 public class Example
2 {
3 public static void main(String[] args)
4 {
5 Shape b1 = new Quadrilateral();
6 Shape c1 = new Square();
7 Shape b2 = b1;
8 Shape c2 = c1;
9 b2.print(c2);

10 }
11 public static class Shape extends objects
12 {
13 public void print(Shape object) {}
14 }
15 public static class Quadrilateral extends Shape
16 {
17 public void print(Shape object) {}
18 }
19 public static class Square extends Quadrilateral
20 {
21 public void print(Shape object) {}
22 }
23 public static class Circle extends Shape
24 {
25 public void print(Shape object) {}
26 }
27 }

10

Introduction Call Graph Construction

Example: CHA Call Graph (2)

Inheritance Hierarchy CHA Call Graph

11

Introduction Call Graph Construction

Existing Algorithms: RTA

Starts with a call graph generated by performing CHA
Eliminates from the hierarchy classes that are never instantiated
Iteratively builds a set of instantiated types, method names invoked and
concrete methods called (starts from the main function)
Example follows

12

Introduction Call Graph Construction

Example: RTA Call Graph (1)

1 public class Example
2 {
3 public static void main(String[] args)
4 {
5 Shape b1 = new Quadrilateral();
6 Shape c1 = new Square();
7 Shape b2 = b1;
8 Shape c2 = c1;
9 b2.print(c2);

10 }
11 public static class Shape extends objects
12 {
13 public void print(Shape object) {}
14 }
15 public static class Quadrilateral extends Shape
16 {
17 public void print(Shape object) {}
18 }
19 public static class Square extends Quadrilateral
20 {
21 public void print(Shape object) {}
22 }
23 public static class Circle extends Shape
24 {
25 public void print(Shape object) {}
26 }
27 }

13

Introduction Call Graph Construction

Example: RTA Call Graph (2)

RTA Call Graph

14

Introduction Call Graph Construction

Existing Algorithms: SPARK

A flexible framework for experimenting with points-to analyses for Java
Supports both subset-based and equality-based flow-insensitive analyses
Analysis on jimple input consists of three stages:

building the pointer assignment graph (PAG)
simplifying the PAG
propagating the points-to sets along it to obtain the final solution

Example follows

15

Introduction Call Graph Construction

Example: SPARK Call Graph (1)

1 public class Example
2 {
3 public static void main(String[] args)
4 {
5 Shape b1 = new Quadrilateral();
6 Shape c1 = new Square();
7 Shape b2 = b1;
8 Shape c2 = c1;
9 b2.print(c2);

10 }
11 public static class Shape extends objects
12 {
13 public void print(Shape object) {}
14 }
15 public static class Quadrilateral extends Shape
16 {
17 public void print(Shape object) {}
18 }
19 public static class Square extends Quadrilateral
20 {
21 public void print(Shape object) {}
22 }
23 public static class Circle extends Shape
24 {
25 public void print(Shape object) {}
26 }
27 }

16

Introduction Call Graph Construction

Example: SPARK Call Graph (2)

SPARK Call Graph

17

Introduction Call Graph Construction

Call Graphs

CHA

RTA SPARK

18

Introduction Spring Framework

Spring Framework

Provides a comprehensive programming and configuration model for
modern Java-based enterprise applications
An application framework for the Java platform
Commonly used for web applications

19

Introduction Spring Framework

Spring Inversion of Control container
The core of the Spring Framework
Inversion of Control: custom-written portions of a computer program
receive the flow of control from a generic framework
Creates the objects, wires them together, configures them and manages
their complete life cycle
Uses dependency injection to manage the components that make up an
application

20

Introduction Spring Framework

Dependency Injection
Application classes should be as independent as possible of other Java
classes to increase the possibility to reuse them
Dependency injection helps in gluing these classes together and at the
same time keeping them independent
Dependency Injection in Spring can be done through constructors, setters
or fields

21

Introduction Spring Framework

Spring beans
The objects that form the backbone of an application
Managed by the Spring IoC container
Objects that are instantiated, assembled and otherwise managed by a
Spring IoC container

22

Introduction Spring Framework

Spring annotations
Describe a bean wiring directly in a Java file without using an XML file
Annotations move bean configuration into the component class
Can be used on the relevant class, method or field declaration
Examples follow

23

Introduction Spring Framework

Some Important Annotations (1)

@Configuration
Indicates that the class can be used by the Spring IoC container as a
source of bean definitions

@Bean
Marks a factory method which instantiates a Spring bean

1 <?xml version = "1.0" encoding = "UTF-8"?>
2 <beans xmlns = "http://www.springframework.org/schema/

beans"
3 xmlns:xsi = "http://www.w3.org/2001/XMLSchema -instance"
4 xmlns:context = "http://www.springframework.org/schema/

context"
5 xsi:schemaLocation = "http://www.springframework.org/

schema/beans
6 http://www.springframework.org/schema/beans/spring-

beans -3.0.xsd
7 http://www.springframework.org/schema/context
8 http://www.springframework.org/schema/context/spring-

context -3.0.xsd">
9 <context:component -scan base-package="package"/>

10 <bean id = "b" class = "package.B"/>
11 </beans>

Listing 1: Bean Configuration File

1 @Configuration
2 public class A
3 {
4 @Bean
5 public B b()
6 {
7 return new B();
8 }
9 ...

10 }

Listing 2: Java File with
Annotations

24

Introduction Spring Framework

Some Important Annotations (2)

@Autowired
Marks a dependency which Spring is going to resolve and inject
Can be used with a constructor, setter or field injection

@Qualifier
Used along with @Autowired to provide the bean id or bean name we want
to use in ambiguous situations
Can be used with a constructor, setter or field injection

1
2 <!-- Definition for student1 bean -->
3 <bean id = "student1" class = "Education.

Student">
4 <property name = "name" value = "Zara" />
5 <property name = "age" value = "11"/>
6 </bean>
7
8 <!-- Definition for student2 bean -->
9 <bean id = "student2" class = "Education.

Student">
10 <property name = "name" value = "Neha" />
11 <property name = "age" value = "2"/>
12 </bean>

Listing 3: Bean Configuration File

1 @Configuration
2 public class Profile
3 {
4 @Autowired
5 @Qualifier("student1")
6 private Student student;
7 ...
8 }

Listing 4: Java File with Annotations

25

Introduction Spring Framework

Components of a Spring Application

26

Observations

A Simple Spring Application (1)
1 public class Student
2 {
3 private Integer age;
4 private String name;
5 // Getter setter methods
6 }

1 public class Profile
2 {
3 private Student student;
4 // Getter setter methods and print method for Name, Age of student
5 }

1 public class MainApp
2 {
3 public static void main(String[] args)
4 {
5 ApplicationContext context = new ClassPathXmlApplicationContext("Bean.xml");
6 Profile profile = (Profile) context.getBean("profile");
7 profile.printName();
8 profile.printAge();
9 }

10 }

Listing 5: Input Program 27

Observations

A Simple Spring Application (2)

1 <!-- Definition for profile bean -->
2 <bean id = "profile" class = "Education.Profile"/>
3
4 <!-- Definition for student1 bean -->
5 <bean id = "student1" class = "Education.Student">
6 <property name = "name" value = "Zara" />
7 <property name = "age" value = "11"/>
8 </bean>
9

10 <!-- Definition for student2 bean -->
11 <bean id = "student2" class = "Education.Student">
12 <property name = "name" value = "Neha" />
13 <property name = "age" value = "2"/>
14 </bean>

28

Observations

Call Graph Observations (1)

Remark: These are the call graphs for the example in Listing 5. Only the
edges relevant to the input are shown.

29

Observations

Call Graph Observations (2)

SPARK misses some edges related to the class Profile, Student.
Time to dive into the implementation of Spring!

30

Observations

Debugging the code

Instantiating the class Profile

31

Observations

Observations

Spring converts every call to the function getBean(. . .) into a call to the
reflective function newInstance(. . .)
SPARK is unable to establish the link between the class (defined in the
Java file) and the bean (defined in the XML file) due to its inability to
handle this reflective function call
Use of reflection makes SPARK unsound

32

Observations

A Spring Application with Core Annotations

1 @Component("engine")
2 public class Engine
3 {
4 @Autowired
5 Engine Engine()
6 {
7 return new Engine();
8 }
9 void print()

10 {
11 System.out.println("In print()");
12 }
13 }

1 public class App
2 {
3 public static void main(String[] args)
4 {
5 ApplicationContext context = new ClassPathXmlApplicationContext("Bean.xml");
6 Engine e = (Engine) context.getBean(Engine.class);
7 e.print();
8 }
9 }

Listing 6: Input Program
33

Observations

Call Graph Observations

Remark: These are the call graphs for the example in Listing 6. Only the
edges relevant to the input are shown.

34

Observations

Debugging the code

Reflective Calls in Annotation Handler

35

Observations

Observations

Spring annotations call reflective calls at the backend
These reflective calls are method.invoke(. . .) calls
All annotated functions absent from the final call graph (for all algorithms)
Unsoundness observed for all core annotations
SPARK also misses the call to print() due to its inability to detect the
Engine bean

36

Possible Solution

Compiling Reflective Calls: The First Attempt

Idea - Create a transformer:
Input: Jimple code + XML file
Output: Jimple code (without reflective functions)

37

Possible Solution

Research Questions

1 Which other basic functions in Spring use reflection?
2 Can we replace these basic functions by transforming them into statically

equivalent code?
3 For the reflective functions that cannot be transformed into equivalent

code,
How can we handle the rest of the functions?
If those functions are not frequently used, can we avoid handling them?

4 Will the transformer output unambiguous results? If not, what can be
done to ensure unambiguity?

5 Will such a transformer be too restricted to Spring framework? How can it
be extended to other web frameworks?

38

Our Solution

Our Solution (1)

1 Extract Bean Data from Spring Container
2 Store it in Bean Dependence Graph (BDG)
3 Transform reflective calls into non-reflective calls

39

Our Solution

Our Solution (2)

1 public class App
2 {
3 public static void main(String[] args)
4 {
5 ApplicationContext context = new ClassPathXmlApplicationContext("file:Bean.xml");
6 Car c = (Car) context.getBean(Car.class);
7 c.print();
8 }
9 }

Listing 7: Original Program P

1 public class App
2 {
3 public static void main(String[] args)
4 {
5 Engine e = new Engine();
6 Car c = new Car();
7 e = c.engine();
8 c.setEngine(e);
9 c.print();

10 }
11 }

Listing 8: Updated Program P”

40

Our Solution

Bean Dependence Graph

A directed acyclic graph G = (V, E) such that
∀ v ∈ V, v = (b, listOfAbstractObjects)
i.e. every vertex v is a pair of a bean b and a list of abstract objects (objects
of the bean class and its subclasses)
∀ u, v ∈ V where u = (u_b, u_listOfObjects) and v = (v_b, v_listOfObjects),
(u, v) ∈ E iff bean v_b is autowired in bean u_b
i.e. every bean b in BDG points to a list of beans which are autowired as
fields of class b

In case of some containers, Spring constructs a dependency graph which
can be updated to construct a BDG
Otherwise, we need to borrow the bean information stored in the
container and construct a BDG
Example follows

41

Our Solution

Bean Dependence Graph: An Example

1 @Component
2 public class Engine
3 {
4 @Autowired
5 Wheel w;
6 @Autowired
7 Fuel f;
8 @Autowired
9 public void setWheel(Wheel w1)

10 {
11 this.w = w1;
12 }
13 @Autowired
14 public void setFuel(Fuel f1)
15 {
16 this.f = f1;
17 }
18 public void func() {...}
19 }
20 @Component
21 public class Wheel {...}
22 @Component
23 public class Fuel {...}

Listing 9: Input Program

42

Our Solution

Example

Step 1: Original Program
1 @Component
2 public class Engine
3 {
4 @Autowired
5 Wheel w;
6 @Autowired
7 Fuel f;
8 @Autowired
9 public void setWheel(Wheel w1)

10 {
11 this.w = w1;
12 }
13 @Autowired
14 public void setFuel(Fuel f1)
15 {
16 this.f = f1;
17 }
18 public void func() {...}
19 }
20 @Component
21 public class Wheel {...}
22 @Component
23 public class Fuel {...}

1 public class App
2 {
3 public static void main(String[]

args)
4 {
5 ApplicationContext context = new

ClassPathXmlApplicationContext("
file:Bean.xml");

6 Engine e = (Engine) context.
getBean("engine");

7 e.func();
8 }
9 }

43

Our Solution

Step 2: For every getBean(. . .) call C, construct a BDG rooted at the bean
returned by C (here, Engine)
1 @Component
2 public class Engine
3 {
4 @Autowired
5 Wheel w;
6 @Autowired
7 Fuel f;
8 @Autowired
9 public void setWheel(Wheel w1)

10 {
11 this.w = w1;
12 }
13 @Autowired
14 public void setFuel(Fuel f1)
15 {
16 this.f = f1;
17 }
18 public void func() {...}
19 }
20 @Component
21 public class Wheel {...}
22 @Component
23 public class Fuel {...}

44

Our Solution

Step 3:
3.1. Traverse the BDG in postorder
3.2. Construct objects for every node (except root)
3.3. Update the BDG with objects
3.4. Update the output program with the constructors and annotated methods

BDG
1 public class App
2 {
3 public static void main(String[] args)
4 {
5 Fuel f = new Fuel();
6 }
7 }

45

Our Solution

Step 3:
3.1. Traverse the BDG in postorder
3.2. Construct objects for every node (except root)
3.3. Update the BDG with objects
3.4. Update the output program with the constructors and annotated methods

BDG
1 public class App
2 {
3 public static void main(String[] args)
4 {
5 Fuel f = new Fuel();
6 Wheel w = new Wheel();
7 }
8 }

46

Our Solution

Step 3:
3.1. Traverse the BDG in postorder
3.2. Construct objects for every node (except root)
3.3. Update the BDG with objects
3.4. Update the output program with the constructors and annotated methods

BDGa

aThe parent node Engine gets the objects of
the children

1 public class App
2 {
3 public static void main(String[] args)
4 {
5 Fuel f = new Fuel();
6 Wheel w = new Wheel();
7 }
8 }

47

Our Solution

Step 4:
4.1. Use the BDG to update the output program
4.2. Explicitly call annotated methods and other methods on the root

1 public class App
2 {
3 public static void main(String[] args)
4 {
5 ApplicationContext context = new ClassPathXmlApplicationContext("file:Bean.xml");
6 Engine e = (Engine) context.getBean("engine");
7 e.func();
8 }
9 }

Listing 10: Input Program

1 public class App
2 {
3 public static void main(String[] args)
4 {
5 Fuel f = new Fuel();
6 Wheel w = new Wheel();
7 Engine e = new Engine();
8 e.setWheel(w);
9 e.setFuel(f);

10 e.func();
11 }
12 }

Listing 11: Output Program
48

Our Solution

Limitations

Our prototype proposal is specific to the following:
Spring API method getBean(. . .)
Spring Containers ClassPathXmlApplicationContext and
FileSystemXmlApplicationContext
Some core annotations (@Bean, @Autowired, @Qualifier, @Component,
@Configuration, @Scope)

At the moment, it does not handle the following:
Other annotations and reflective calls
MVC framework in Spring
Applications with a cyclic bean dependency

49

Conclusion

Conclusion

While a lot of research effort has gone into development of sound call
graph construction algorithms, the area of call graph construction for web
frameworks remains almost unexplored
Unsoundness of call graph construction algorithms for Spring framework
is only due to the presence of reflective calls
We present a hybrid analysis algorithm which generates a simple,
non-reflective version of the input Spring program written in Java
This algorithm would work on programs written in web frameworks
designed on top of the Spring framework and the call graph constructed
for these programs would be sound and precise, as required

50

Conclusion

Future Work

Apart from Spring beans and core annotations, reflective calls are used in
the Spring API for the following:

Creating an Async Web Request, which is the first step in running a Spring
MVC application
Calling annotated methods in MVC Annotation Handlers (@Controller,
@RequestMapping etc.)
Specifying the JDBC Driver implementation class
Creating a new annotation type filter for the given annotation type

Our hybrid analysis algorithm can be extended to handle these cases and
construct sound and precise call graphs for Spring MVC applications

51

References

References (1)

(1) Call Graph Construction Algorithms.
https://ben-holland.com/call-graph-construction-algorithms-explained/.

(2) Dependency Injection.
https://www.baeldung.com/inversion-control-and-dependency-injection-in-
spring.

(3) Spring Annotations.
https://www.baeldung.com/spring-core-annotations.

(4) Spring Framework.
https://spring.io/projects/spring-framework.

(5) Spring Tutorial.
https://www.tutorialspoint.com/spring.

(6) Spring Web MVC Framework.
https://docs.spring.io/spring/docs/3.2.x/spring-framework-
reference/html/mvc.html.

52

References

References (2)

(7) Wikipedia contributors.
https://en.wikipedia.org/wiki/Call_graph.

(8) Wikipedia contributors.
https://en.wikipedia.org/wiki/Inversion_of_control.

(9) Ondrej Lhotak and Laurie Hendren. Scaling Java Points-to Analysis
Using SPARK. In Proceedings of the 12th International Conference on
Compiler Construction. CC 03. Warsaw, Poland.
http://dl.acm.org/citation.cfm?id=1765931.1765948.

53

References

Questions?

54

Extra Slides

Extra slides

55

Extra Slides

Algorithm (1)

Algorithm 1: Traverse the BDG in postorder and call annotated functions
Input: Bean Dependence Graph BDGa

Output: Root of BDG
1 begin
2 for (every node n) do
3 Instantiate object obj for all children(n)
4 Call all methods annotated by @Autowired on obj
5 if (n is not the root) then
6 Instantiate object obj for n
7 Call all methods annotated by @Autowired on obj
8 end
9 end

10 return root(BDG)
11 end

aAssumption: BDG is acyclic
56

Extra Slides

Algorithm (2)

Algorithm 2: Transform Codea Using Bean Information
1 begin
2 for every getBean(. . .) call C in input program P do
3 b = bean returned by C
4 root = populateBeans(BDG)
5 Update the output program:
6 Instantiate object obj for root
7 Call all methods annotated by @Autowired on obj
8 Call all direct methods of class(root) on obj
9 end

10 end

aWe only consider the containers ClassPathXmlApplicationContext and
FileSystemXmlApplicationContext in this prototype

57

Extra Slides

Handling Different Bean Scopes (1)

When defining a bean, there is an option to declare a scope for that bean. The
Spring Framework supports two main scopes:

1 singleton: Scopes the bean definition to a single instance per Spring IoC
container (default)

1 public class App
2 {
3 public static void main(String[] args)
4 {
5 ApplicationContext context = new

ClassPathXmlApplicationContext(....);
6 Car c = (Car) context.getBean("car");
7 c.print();
8 Car cc = (Car) context.getBean("car");
9 cc.print();

10 }
11 }

Listing 12: Original Program

1 public class App
2 {
3 public static void main(String[]

args)
4 {
5 Engine e = new Engine();
6 Car c = new Car();
7 e = c.engine();
8 c.setEngine(e);
9 c.print();

10 Car cc = c;
11 cc.print();
12 }
13 }

Listing 13: Updated Program

58

Extra Slides

Handling Different Bean Scopes (2)

2 prototype: Scopes a single bean definition to have any number of object
instances. The Spring IoC container creates a new bean instance of the
object every time a request for that specific bean is made

1 public class App
2 {
3 public static void main(String[] args)
4 {
5 ApplicationContext context = new

ClassPathXmlApplicationContext(....);
6 Car c = (Car) context.getBean("car");
7 c.print();
8 Car cc = (Car) context.getBean("car");
9 cc.print();

10 }
11 }

Listing 14: Original Program

1 public class App
2 {
3 public static void main(String[]

args)
4 {
5 Engine e = new Engine();
6 Car c = new Car();
7 e = c.engine();
8 c.setEngine(e);
9 c.print();

10 Engine e2 = new Engine();
11 Car cc = new Car();
12 e2 = cc.engine();
13 cc.setEngine(e2);
14 cc.print();
15 }
16 }

Listing 15: Updated Program

59

Extra Slides

Handling Different Spring Containers

60

	Motivation
	Introduction
	Call Graph Construction
	Spring Framework

	Observations
	Possible Solution
	Our Solution
	Conclusion
	References
	Extra Slides

